An experimental study of compression methods for dynamic tries

Stefan Nilsson
Helsinki University of Technology
e-mail: Stefan.Nilsson@hut.fi

Matti Tikkanen
Nokia Telecommunications
e-mail: Matti.Tikkanen@ntc.nokia.com

Abstract
We study an order-preserving general purpose data structure for binary data, the LPC-trie. The structure is a compressed trie, using both level and path compression. The memory usage is similar to that of a balanced binary search tree, but the expected average depth is smaller. The LPC-trie is well suited to modern language environments with efficient memory allocation and garbage collection. We present an implementation in the Java programming language and show that the structure compares favorably to a balanced binary search tree.

Keywords
data structures, trie, LPC-trie, level compression, relaxed level compression, memory management, binary search tree, Java.

Code, test data, and experimental results accompanying this article is available at URL

http://www.cs.hut.fi/~sni

1Phone: +358-9-451 4850, Fax: +358-9-451 3293, P.O. Box 5400, FIN-02015 HUT, Finland.
1 Introduction

We describe a dynamic main memory data structure for binary data, the level and path compressed trie or LPC-trie. The structure is a dynamic variant of a static level compressed trie or LC-trie [2]. The trie is a simple order preserving data structure supporting fast retrieval of elements and efficient nearest neighbor and range searches. There are several methods for implementing dynamic trie structures in the literature [5, 7, 9, 18, 24]. One of the drawbacks of these methods is that they need considerably more memory than a balanced binary search tree. In this study we show how to avoid this problem by using trie compression. In addition to the well known path compression technique we utilize level compression, a technique that reduces both the size and the depth of a trie. We show how to make the restructuring in a dynamic trie more efficient by introducing a relaxed criterion for level compression. Relaxed level compression also reduces the depth further, while using similar amounts of memory.

There are two main reasons why we choose to study dynamic trie structures using experimental rather than analytical methods. First, the form of a trie depends on the kind of data stored. Hence analytic studies always need to use a data model, such as uniform distribution, independent random samples from a certain distribution function, or Bernoulli-type processes. It is well known that tries have a low average depth for all these types of data, but it is not immediately clear how these results translate to real world data. In this study we have used samples of English text, Internet routing tables, and geographic point data. Second, a dynamic trie structure relies heavily upon automatic memory management and we wanted to study how this affects the performance. In fact, we were initially doubtful whether it would be feasible to implement a dynamic level-compressed trie at all, since the amount of memory management seemed prohibitive. It is difficult to approach this type of memory problems analytically, since the memory allocation patterns depend not only on the data, but also on the updates that are actually performed.

In its original form the trie [13, 15] is a data structure where a set of strings from an alphabet containing m characters is stored in a m-ary tree and each string corresponds to a unique path. In this article, we only consider binary trie structures, thereby avoiding the problem of representing large internal nodes. Using a binary alphabet tends to increase the depth of the trie when compared to character-based tries. To counter this potential problem we use two different compression techniques, path compression and level compression.

The average case behavior of trie structures has been the subject of thorough theoretic analysis [12, 19, 29, 30]; an extensive list of references can be found in Handbook of Theoretical Computer Science [22]. The expected average depth of a trie containing n independent random strings from a distribution with density function $f \in L^2$ is $\Theta(\log n)$ [8]. This result holds also for data from a Bernoulli-type process [10, 11].

The best known compression technique for tries is path compression. The
idea is simple: paths consisting of a sequence of single-child nodes are compressed, as shown in Figure 1b. A path compressed binary trie is often referred to as a Patricia trie. Path compression may reduce the size of the trie dramatically. In fact, the number of nodes in a path compressed binary trie storing \(n \) keys is \(2n - 1 \). The asymptotic expected average depth, however, is typically not reduced [17, 19].

Level compression [2] is a more recent technique. Once again, the idea is simple: subtrees that are complete (all children are present) are compressed, and this compression is performed top down, see Figure 1c. Previously this technique has only been used in static data structures, where efficient insertion and deletion operations are not provided [4]. The level compressed trie, LC-trie, has proved to be of interest both in theory and practice. It is known that the average expected depth of an LC-trie is \(O(\log \log n) \) for data from a large class of distributions [3]. This should be compared to the logarithmic depth of uncompressed and path compressed tries. These results also translate to good performance in practice, as shown by a recent software implementation of IP routing tables using a static LC-trie [26].

One of the difficulties when implementing a dynamic compressed trie structure is that a single update operation may cause a large and costly restructuring of the trie. Our solution to this problem is to relax the criterion for level compression and allow compression to take place even when a subtree is only partly filled. This has several advantages. There is less restructuring, because it is possible to do a number of updates in a partly filled node without violating the constraints triggering its resizing. In addition, this relaxed level compression reduces the depth of the trie even further. In some cases this reduction can be quite dramatic. The price we have to pay is the potentially increasing storage requirements. However, it is possible to get the beneficial effects using only a very small amount of additional memory.

In spatial applications trie-based data structures such as the quadtree and the octree are extensively used [31]. To reduce the number of disk accesses in a secondary storage environment, dynamic order-preserving data structures based on extendible hashing or linear hashing have been introduced. Lommet [23], Tamminen [35], Nievergelt et al. [25], Otoo [27, 28], Whang and Khrishnamurthy [37], Freeston [14], and Seeger and Kriegel [33] describe data structures based on extendible hashing. Kriegel and Seeger [20] and Hutflesz et al. [16] describe data structures based on linear hashing. All of the data structures mentioned above have been designed for a secondary storage environment, but similar structures have also been introduced for main memory. Larson [21] describes a linear hashing based main memory data structure. Analyti and Pramanik [1] compare the search performance of two extendible hashing based main memory structures to Larson’s data structure.
2 Compressing binary trie structures

In this section we give a brief overview of binary tries and compression techniques. We start with the definition of a binary trie. We say that a string w is the i-suffix of the string u, if there is a string v of length i such that $u = vw$.

Definition 1 A binary trie containing n elements is a tree with the following properties:

- If $n = 0$, the trie is empty.
- If $n = 1$, the trie consists of a node that contains the element.
- If $n > 1$, the trie consists of a node with two children. The left child is a binary trie containing the 1-suffixes of all elements starting with 0 and the right child is a binarytrie containing the 1-suffixes of all elements starting with 1.

Figure 1a depicts a binary trie storing 15 elements. In the figure, the nodes storing the actual binary strings are numbered starting from 0. For example, node 14 stores a binary string whose prefix is 11101001.

We assume that all strings in a trie are prefix-free: no string can be a prefix of another. In particular, this implies that duplicate strings are not allowed. If all strings stored in the trie are unique, it is easy to insure that the strings are prefix-free by appending a special marker at the end of each string. For example, we can append the string 10000... to the end of each string. A finite string that has been extended in this way is often referred to as a semi-infinite string or sistring.

A path compressed binary trie is a trie where all subtrees with an empty child have been removed.

Definition 2 A path compressed binary trie containing n elements is a tree with the following properties:

- If $n = 0$, the trie is empty.
- If $n = 1$, the trie consists of a node that contains the element.
- If $n > 1$, the trie consists of a node containing two children and a binary string s of length $|s|$. This string equals the longest prefix common to all elements stored in the trie. The left child is a path compressed binary trie containing the $(|s| + 1)$-suffixes of all elements starting with $s0$ and the right child is a path compressed binary trie containing the $(|s| + 1)$-suffixes of all elements starting with $s1$.

Figure 1b depicts the path compressed binary trie corresponding to the binary trie of Figure 1a. A natural extension of the path compressed trie is to use more than one bit for branching. We refer to this structure as a level and path compressed trie.
Definition 3 A level and path compressed trie, or an LPC-trie, containing \(n \) elements is a tree with the following properties:

- If \(n = 0 \), the trie is empty.
- If \(n = 1 \), the trie consists of a node that contains the element.
- If \(n > 1 \), the trie consists of a node containing \(2^i \) children for some \(i \geq 1 \), and a binary string \(s \) of length \(|s| \). This string equals the longest prefix common to all elements stored in the trie. For each binary string \(x \) of length \(|x| = i \), there is a child containing the \((|s| + |x|)-\)suffixes of all elements starting with \(sx \).

A perfect LPC-trie is an LPC-trie where no empty nodes are allowed.

Definition 4 A perfect LPC-trie is an LPC-trie with the following properties:

- The root of the trie holds \(2^i \) subtries, where \(i \geq 1 \) is the maximum number for which all of the subtries are non-empty.
- Each subtrie is an LPC-trie.

Figure 1c provides an example of a perfect LPC-trie corresponding to the path compressed trie in Figure 1b. Its root is of degree 8 and it has four subtries storing more than one element: a child of degree 4 and three children of degree 2.

3 Implementation

We have implemented the LPC-trie in the Java programming language. Java is widely available, has well defined types and semantics, offers automatic memory management, and supports object oriented program design. The speed of a Java program is typically slower than that of a carefully implemented C program. This is mostly due to the immaturity of the currently available compilers and runtime environments. We see no reason why the performance of Java programs should not be competitive in the near future.

We have separated the details of the binary string manipulation from the trie implementation by introducing an interface \texttt{SIStr} that represents a semi-infinite binary string. To adapt the data structure to a new data type, we only need to write a class that implements the \texttt{SIStr} interface. In our code we give three implementations, one for ASCII character strings, one for short binary strings as found in Internet routers, and one for points in a plane with integer coordinates. In the \texttt{SIStr} interface implementation for planar points we use a preprocessing step that interleaves the bits of 32-bit planar coordinates to produce a one-dimensional 64-bit coordinate. Bit interleaving is extensively discussed in [32].
One of the most important design issues is how to represent the nodes of the trie. We use different classes for internal nodes and leaves. The memory layout of a leaf is straightforward. A leaf contains a reference to a key, which is a sistring, and a reference to the value associated with this key. An internal node is represented by two integers, a reference to a String and an array of references to the children of the node. Instead of explicitly storing the longest common prefix string representing a compressed path, we use a reference to a leaf in one of the subtries. We need two additional integers, pos that indicates the position of the first bit used for branching and bits that gives the number of bits used. The size of the array equals 2^{bits}. The number bits is not strictly necessary, since it can be computed as the binary logarithm of the size of the array.

The replacement of the longest common prefix string with a leaf reference saves us some memory and provides us access to the prefix string from an internal node. This is useful during insertions and when the size of a node is increased. An alternative would be to remove the references altogether. In this way we could save some additional memory. The drawback is that insertions might become slower, since we would always need to traverse the trie all the way down to a leaf. On the other hand, a number of substring comparisons taking place in the path-compressed nodes of the trie would be replaced with a single operation finding the first conflicting bit in the leaf, which might well balance the extra cost of traversing longer paths. The doubling operation, however, would clearly be more expensive if the references were removed.

The search operation is very simple and efficient. At each internal node, we extract from the search key the number of bits indicated by bits starting at position pos. The extracted bits are interpreted as a number that is used for indexing the child array. Note that we never inspect the longest common prefix strings during the search. It is typically more efficient to perform only one test for equality when reaching the leaf.

Insertions and deletions are also straightforward. They are performed in the same way as in a standard path-compressed trie. When inserting a new element into the trie, we either find an empty leaf where the element can be inserted or there will be a mismatch when traversing the trie. This mismatch may happen when we compare the path compressed string in an internal node with the string to be inserted or it may occur in a leaf. In both cases we insert a new binary node with two children, of which one contains the new element and the other the previous subtree. The only problem is that we may need to resize some of the nodes on the traversed path to retain proper level compression in the trie. We use two different node resizing operations to achieve this: halving and doubling. Figure 2 illustrates how the doubling operation is performed and Figure 3 shows the halving.

We first discuss how to maintain a perfect LPC-trie during insertions and deletions. If a subtrie of an internal node is deleted, we need to compress the node to remove the empty subtrie. If the node is binary, it can be deleted
altogether; otherwise we halve the node. Note that it may also be necessary to
resize some of the children of the halved node to retain proper compression.

On the other hand, it may be possible to double the size of a node without
introducing any new empty subtrees. This will happen if each child of the node
is full. We say that a node is full if it has at least two children and an empty
path compression string. Note that it may be possible to double the node more
than once without introducing empty subtrees.

When a node is doubled, we must split all of its full children of degree greater
than two. A split of a child node of degree 2^i leads to the creation of two new
child nodes of degree 2^{i-1}, one holding the 1-suffixes of all elements starting
with 0 and one the 1-suffixes of all elements starting with 1. Once again, notice
that it may also be necessary to resize the new children to retain the perfect
level compression.

In order to efficiently determine when to resize, we use two additional num-
bers in each internal node. One of the numbers indicates the number of null
references in the array and the other the number of full children.

The requirement of perfect level compression may lead to very expensive
update operations. Consider a trie with a root of degree 2^i. Further assume
that all subtrees except one contain two elements and the remaining subtrie only
one. Inserting an element into the one-element subtrie will lead to a complete
restructuring of the trie. Now, when removing the same key, we once again
have to completely rebuild the trie. A sequence of alternating insertions and
deletions of this particular key is therefore very expensive.

To reduce the risk of very expensive update operations we do not require
our LPC-trie to be perfect. A node is doubled only if the resulting node has few
empty children. Similarly, a node is halved only if it has a substantial number
of empty children. We use two thresholds: low and high. A node is doubled
if the ratio of non-empty children to all children in the doubled node is at least
high. A node is halved if the ratio of non-empty children to all children in the
current node is less than low. These values are determined experimentally. In
our experiments, we found that the thresholds 25% for low and 50% for high
give a good performance.

A relatively simple way to reduce the space requirements of the data struc-
ture is to use a different representation for internal nodes with only two children.
For small nodes we need no additional data, since it is cheap to decide when to
resize the node. This will give a noticeable space reduction, if there are many
binary nodes in the trie. It also reduces the total amount of memory allocation,
since child arrays with only two pointers no longer exist. In order to keep the
code simple, we have not currently implemented this optimization.
4 Experimental results

We have compared different compression strategies for binary tries: mere path compression, path and perfect level compression, and path and relaxed level compression. To give an indication of the performance relative to comparison-based data structures, we also implemented a randomized binary search tree, or treap [34]. Furthermore, we translated the red-black tree implementation from the textbook of Cormen, Leiserson, and Rivest [6] to Java. We tried to keep true to the original implementation, only fixing some minor bugs.

A binary trie may of course hold any kind of binary data. In this study, we have chosen to inspect ASCII character strings, short binary strings from Internet routing tables, and geometric point data. In addition, we evaluated the performance for uniformly distributed binary strings.

We refrained from low-level optimizations. Instead, we made an effort to make the code simple and easy to maintain and modify. Examples of possible optimizations that are likely to improve the performance on many current Java implementations include: avoding synchronized method calls, avoiding the instanceof operator, performing function inlining and removing recursion, performing explicit memory management, for example by reusing objects, and hard coding string operations. All of these optimizations could be performed automatically by a more sophisticated Java environment.

4.1 Method

The speed of a program is highly dependent on the runtime environment. In particular, the performance of the insert and delete operations depends heavily on the quality of the memory management system. It is easier to predict the performance of a search, since this operation requires no memory allocation. The search time is proportional to the average depth of the structure. The timings reported in the experiments are actual clock times on a multi-user system.

When automatic memory management is used, it becomes harder to estimate the running time of an algorithm, since a large part of the running time is spent within a machine dependent memory manager. There is clearly a need for a standard measure. A simple measure is to count the allocations of different size memory blocks. This measure could be estimated both analytically and experimentally. Accounting for memory blocks that are deallocated, or in the case of a garbage collected environment no longer referenced, is more difficult but clearly possible. To interpret these measures we need, of course, realistic models of automatic memory managers. We take the simple approach of counting the number of objects of different sizes allocated by the algorithm: the number of leaves, internal nodes, and arrays of child pointers. Even this crude information turned out to be useful in evaluating the performance and tuning the code.

It is somewhat difficult to measure the size of the data structure, since the internal memory requirements of references and arrays in Java are not specified
in the language definition. The given numbers pertain to an implementation, where a reference is represented by a 32-bit integer, and an array by a reference to memory and an integer specifying the size of the array. We only count the size of the actual data structure, not the size of the stored elements.

We perform four different test sequences: **Put**, **Get**, **Rem**, and **Upd**. **Put** inserts all of the elements into an empty data structure; **Get** searches for each of the elements in a full data structure; that is all searches are successful. **Rem** removes the elements, one by one, from the data structure. **Upd** is a random sequence of insertions and deletions. For each operation we randomly either insert or delete an element that is chosen at random from the data set. Before starting the measurement we perform 1,000,000 random updates starting with an empty data structure. The measurement is performed on 100,000 update operations. For all of these sequences we measure the elapsed time. For **Put**, **Rem**, and **Upd** we also measure the number of memory allocations. **Get** is not included, because it doesn’t allocate any memory.

We used the JDK (Java Development Kit) version 1.1.5 compiler from SUN to compile the program into byte code. The experiments were run on a SUN Ultra Sparc II with two 296-MHz processors and 512 MB of RAM. We used the JDK 1.1.5 runtime environment with default settings. The test data consisted of binary strings from Internet routing tables, ASCII strings from the Calgary Text Compression Corpus, a standardized text corpus frequently used in data compression research, and geometric point data [36] as depicted in Figure 4.

4.2 Discussion

Table 1 shows the average and maximum depths and the sizes of the data structures tested. We also give timings for inserting all of the elements (**Put**), retrieving them (**Get**), deleting them one by one (**Rem**) and performing a random sequence of 100,000 updates (**Upd**). The timings should be carefully interpreted since the update operations, in particular, depend very much on the memory management system.

Starting with the two comparison-based data structures, the treap and the red-black tree, we note that the performance is similar. The red-black tree has a slightly lower average depth and, typically, a much lower maximum depth. Note that the slightly better performance of red-black trees cannot be completely explained by the difference in average depth. It is probably due to the iterative implementation of the red-black tree and its more aggressive use of code inlining. We conclude that even in an immature language like Java, with relatively costly method calls and primitive code optimization, the gains obtained by recursion elimination and inlining are relatively small. The red-black tree implementation uses parent pointers which explains its larger size compared to the treap.

The path-compressed trie is not an attractive alternative to a binary search tree. Even though the average depth and the size of the trie are comparable to those of the binary search trees, the execution times are markedly slower.
RANDOM, bit strings (60000 unique entries)

<table>
<thead>
<tr>
<th></th>
<th>Depth</th>
<th>Put</th>
<th>Get</th>
<th>Rem</th>
<th>Upd</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treap</td>
<td>18.6</td>
<td>4.0</td>
<td>2.6</td>
<td>2.9</td>
<td>7.7</td>
<td>1000</td>
</tr>
<tr>
<td>RedBlack tree</td>
<td>14.0</td>
<td>3.3</td>
<td>1.6</td>
<td>1.9</td>
<td>4.9</td>
<td>1200</td>
</tr>
<tr>
<td>Path-compressed trie</td>
<td>15.9</td>
<td>20</td>
<td>0.9</td>
<td>2.6</td>
<td>6.0</td>
<td>143</td>
</tr>
<tr>
<td>Perfect LPC</td>
<td>3.7</td>
<td>8</td>
<td>5.6</td>
<td>0.8</td>
<td>4.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Relaxed LPC (50/75)</td>
<td>2.0</td>
<td>5</td>
<td>5.1</td>
<td>0.4</td>
<td>1.7</td>
<td>3.6</td>
</tr>
<tr>
<td>Relaxed LPC (75/75)</td>
<td>2.0</td>
<td>5</td>
<td>5.6</td>
<td>0.6</td>
<td>1.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Relaxed LPC (25/50)</td>
<td>1.6</td>
<td>4</td>
<td>4.3</td>
<td>0.4</td>
<td>1.1</td>
<td>2.8</td>
</tr>
</tbody>
</table>

MAE-EAST, routing table (36470 entries, 38367 unique entries)

<table>
<thead>
<tr>
<th></th>
<th>Depth</th>
<th>Put</th>
<th>Get</th>
<th>Rem</th>
<th>Upd</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treap</td>
<td>17.9</td>
<td>34</td>
<td>2.4</td>
<td>4.2</td>
<td>1.8</td>
<td>7.3</td>
</tr>
<tr>
<td>RedBlack tree</td>
<td>14.8</td>
<td>26</td>
<td>2.5</td>
<td>1.1</td>
<td>1.1</td>
<td>4.3</td>
</tr>
<tr>
<td>Path-compressed trie</td>
<td>15.6</td>
<td>24</td>
<td>6.7</td>
<td>2.0</td>
<td>4.5</td>
<td>16.1</td>
</tr>
<tr>
<td>Perfect LPC</td>
<td>5.8</td>
<td>13</td>
<td>4.6</td>
<td>0.8</td>
<td>4.6</td>
<td>8.3</td>
</tr>
<tr>
<td>Relaxed LPC (50/75)</td>
<td>3.7</td>
<td>7</td>
<td>5.7</td>
<td>0.5</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Relaxed LPC (25/50)</td>
<td>3.7</td>
<td>7</td>
<td>5.6</td>
<td>0.5</td>
<td>1.6</td>
<td>4.9</td>
</tr>
<tr>
<td>Relaxed LPC (25/50)</td>
<td>2.9</td>
<td>5</td>
<td>4.8</td>
<td>0.4</td>
<td>2.3</td>
<td>4.1</td>
</tr>
</tbody>
</table>

DRILL MILES, point data (19461 unique entries)

<table>
<thead>
<tr>
<th></th>
<th>Depth</th>
<th>Put</th>
<th>Get</th>
<th>Rem</th>
<th>Upd</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treap</td>
<td>16.7</td>
<td>32</td>
<td>1.0</td>
<td>0.7</td>
<td>0.8</td>
<td>6.4</td>
</tr>
<tr>
<td>RedBlack tree</td>
<td>12.8</td>
<td>17</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Path-compressed trie</td>
<td>20.8</td>
<td>30</td>
<td>3.7</td>
<td>1.0</td>
<td>2.8</td>
<td>17.2</td>
</tr>
<tr>
<td>Perfect LPC</td>
<td>9.9</td>
<td>17</td>
<td>3.0</td>
<td>0.5</td>
<td>2.2</td>
<td>12.2</td>
</tr>
<tr>
<td>Relaxed LPC (50/75)</td>
<td>6.8</td>
<td>11</td>
<td>2.4</td>
<td>0.4</td>
<td>1.6</td>
<td>8.0</td>
</tr>
<tr>
<td>Relaxed LPC (25/75)</td>
<td>6.0</td>
<td>12</td>
<td>2.9</td>
<td>0.4</td>
<td>1.2</td>
<td>7.9</td>
</tr>
<tr>
<td>Relaxed LPC (25/50)</td>
<td>5.2</td>
<td>9</td>
<td>2.3</td>
<td>0.3</td>
<td>1.7</td>
<td>6.5</td>
</tr>
</tbody>
</table>

BOOK1, text (16622 lines, 16542 unique entries, 768770 characters)

<table>
<thead>
<tr>
<th></th>
<th>Depth</th>
<th>Put</th>
<th>Get</th>
<th>Rem</th>
<th>Upd</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treap</td>
<td>16.7</td>
<td>32</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td>9.5</td>
</tr>
<tr>
<td>RedBlack tree</td>
<td>12.7</td>
<td>17</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>6.9</td>
</tr>
<tr>
<td>Path-compressed trie</td>
<td>20.2</td>
<td>41</td>
<td>4.0</td>
<td>1.6</td>
<td>2.8</td>
<td>21.2</td>
</tr>
<tr>
<td>Perfect LPC</td>
<td>14.3</td>
<td>28</td>
<td>3.5</td>
<td>1.0</td>
<td>2.3</td>
<td>16.9</td>
</tr>
<tr>
<td>Relaxed LPC (50/75)</td>
<td>10.4</td>
<td>23</td>
<td>2.7</td>
<td>0.9</td>
<td>1.7</td>
<td>13.8</td>
</tr>
<tr>
<td>Relaxed LPC (25/75)</td>
<td>10.4</td>
<td>23</td>
<td>3.1</td>
<td>0.9</td>
<td>1.7</td>
<td>13.2</td>
</tr>
<tr>
<td>Relaxed LPC (25/50)</td>
<td>9.0</td>
<td>18</td>
<td>2.6</td>
<td>0.8</td>
<td>1.5</td>
<td>11.9</td>
</tr>
</tbody>
</table>

Table 1: Experimental results. The size figures in parentheses refer to a more compact trie representation.
This is because we need to allocate new memory when the trie is restructured during insertions and deletions. Also the searches are slower. Hence we may conclude that the bit extraction and comparison in an internal trie node is more expensive than the plain comparison in a binary search tree node. It should be noted, however, that our implementation of a path-compressed trie has some unnecessary overhead, since we have implemented it as a special case of the level-compressed trie. Thus, we perform some bookkeeping activities that aren’t necessary in a trie without level compression. Finally, note that the size of the path-compressed trie is a simple function of the number of elements n, since the number of leaves is n and number of internal nodes is n – 1. In our implementation the size of the path-compressed trie and the red-black tree are, in fact, equal.

We study three variants of the relaxed LPC-trie. The first parameter low indicates the upper bound of the ratio of null pointers to all pointers in the current node and the second parameter high the lower bound of the ratio of non-null pointers to all pointers in the doubled node.

In general, the LPC-trie behaves best for uniformly distributed data, but even for English text the performance is satisfactory. Level compression leads to a significant reduction of the average path length. Even in the least favorable case, the text, the size reduction compared to a path-compressed trie is more than a factor two. For the search operation this reduction in average depth is enough to make the LPC-trie the fastest, even for text data. For the update operations the additional cost of restructuring the trie is competitive with the binary search trees only for data with a high degree of randomness.

When comparing the different variants of the LPC-trie, we note that the differences in time correlate well with the differences in the average depth. There are some noticeable exceptions, however. For example, the 25/75 sequence for the mae-east routing table is performed much faster by the 25/75 variant than by the other LPC-trie variants. The 25/75 variant performs much less memory allocation than the other variants, as can be seen in Figure 5.

Figure 7 shows memory profiles of the different update sequences for English text. The amount of memory allocation needed to maintain the level compression is very small: the number of internal nodes allocated only slightly exceeds the number of leaves. However, we see that the algorithm frequently allocates arrays containing only two elements. To create a binary node, two memory allocations are needed: one to create the object itself and one to create the array of children. If we used a different memory layout for binary nodes we could reduce the number of array allocations considerably. For deletions, very little memory management is needed. Comparing with Table 1 we may conclude that the level compression reduces the average depth of the trie structure from 20 to 9 using very little restructuring.

For the routing table data and the geometric data the situation is different. In Figures 5 and 6 we see that the number of internal node and array allocations clearly exceeds the number of leaves. However, the extra work spent in
restructuring the trie pays off. For example, in Table 1 the average depth of the routing table stored in a path-compressed trie is 18, the corresponding perfect LPC-trie has depth 6, and the relaxed LPC-trie depth 3. In this particular Java environment this reduction in depth is enough to compensate for the extra restructuring cost. The insertions times are, in fact, slightly faster for the level compressed tries, as compared to a tree using only path compression. We also note that the naive implementation of the doubling and halving algorithms results in more memory allocation than would be strictly necessary. Thus, it should be possible to improve running time by coding these operations more carefully.

In our implementation, the size of the trie structure is larger than the size of a corresponding binary search tree. However, by using a more compact memory representation for binary nodes as discussed in Section 3 we could achieve memory usage very similar to the treap. This optimization will also eliminate a large part of the memory allocation, since we no longer need to allocate arrays containing only two elements. As can be seen in the memory profiles, this type of allocation is rather frequent.

There are many other possible further optimizations. For data with a very skewed distribution such as the English text, one might introduce a preprocessing step, where the strings are compressed, resulting in a more even distribution [4]. For example, order preserving Huffman coding could be used.

Both doubling and halving may introduce new child nodes that also need to be resized. In the current implementation, we recursively resize all of the new child nodes that fulfill the resizing condition. This may become too expensive for some distributions of data, because several subtrees may have to be recursively resized. One way to avoid too expensive resizing operations is to restrict resizing to the nodes that lie along the search path of the update operation. This will make searches more expensive, but in an update intensive environment this might be the right thing to do. It is also possible to permit resizing to occur during searches in order to distribute the cost of resizing more evenly among operations.

5 Conclusions

For both integers and text strings, the average depth of the LPC-trie is much less than that of the balanced binary search tree, resulting in better search times. In our experiments, the time to perform the update operations was similar to the binary search tree. Our LPC-trie implementation relies heavily on automatic memory management. Therefore, we expect the performance to improve when more mature Java runtime environments become available. The space requirements of the LPC-trie are also similar to the binary search tree. We believe that the LPC-trie is a good choice for an order preserving data structure when very fast search operations are required.
The standard measure of performance in theoretical studies of trie structures, the average depth, explains much of the observed performance in our experiments. The second most important factor seems to be the memory allocation. The cases where we have noticeable differences in time and average depth can be explained by large differences in the amount of memory allocations. Additional factors that are often mentioned as bottlenecks in object oriented languages such as the overhead for dispatched method calls seemed to be less important.

Acknowledgements

We thank Petri Mäenpää, Ken Rice, Elias Soisalon-Soininen, and Peter Widmayer for comments on an earlier draft of this paper.

Tikkanen's work has been carried out in the HiBase project that is a joint research project of Nokia Telecommunications and Helsinki University of Technology. The HiBase project has been financially supported by the Technology Development Centre of Finland (Tekes).

References

Figure 1: (a) A binary trie; (b) a path compressed trie; (c) a perfect LPC-trie.
Figure 2: Node doubling.

Figure 3: Node halving.
Figure 4: Drill holes in Munich.
Figure 5: Memory profiles for mae-east routing table (38470 entries).
Figure 6: Memory profiles for drill holes in Munich (19461 entries).
Figure 7: Memory profiles for book1 (16622 entries).