Quantum Computation - Lecture 11 - The Local Hamiltonian Problem

Mateus de Oliveira Oliveira

TCS-KTH

February 20, 2013
Nondeterministic Polynomial Time (NP)

A language $L \subseteq \{0,1\}^*$ is in NP:

- There exists a uniform sequence $C_1, C_2, ...$ of circuits such that
 - If $x \in L$, then there exists y such that $C_1(x, y) = 1$.
 - If $x \not\in L$, then for every y, $C_1(x, y) = 0$.
Nondeterministic Polynomial Time (NP)

- A language $L \subseteq \{0,1\}^*$ is in NP:
- There exists a uniform sequence C_1, C_2, \ldots of circuits such that
Nondeterministic Polynomial Time (NP)

- A language $L \subseteq \{0, 1\}^*$ is in NP:
 - There exists a uniform sequence C_1, C_2, \ldots of circuits such that
 - If $x \in L$, then there exists y such that $C_1 | x | (x, y) = 1$.
 - If $x \not\in L$, then for every y, $C_1 | x | (x, y) = 0$.

Mateus de Oliveira Oliveira (TCS-KTH) Quantum Computation - Lecture 11 - The Local Hamiltonian Problem February 20, 2013 2 / 13
Nondeterministic Polynomial Time (NP)

- A language $L \subseteq \{0, 1\}^*$ is in NP:
- There exists a uniform sequence C_1, C_2, \ldots of circuits such that
 - If $x \in L$, then there exists y then $C_{|x|}(x, y) = 1$.
 - If $x \not\in L$, then for every y, $C_{|x|}(x, y) = 0$.
Nondeterministic Polynomial Time (NP)

A language $L \subseteq \{0,1\}^*$ is in NP:
- There exists a uniform sequence C_1, C_2, \ldots of circuits such that
 - If $x \in L$, then there exists y such that $C_{|x|}(x, y) = 1$.
 - If $x \notin L$ then for every y $C_{|x|}(x, y) = 0$.

Mateus de Oliveira Oliveira (TCS-KTH) Quantum Computation - Lecture 11 - The Local Hamiltonian Problem February 20, 2013 2 / 13
Merlin-Arthur (MA)

- A language $L \subseteq \{0, 1\}^*$ is in MA:
Merlin-Arthur (MA)

- A language $L \subseteq \{0, 1\}^*$ is in MA:
- There exists a uniform sequence C_1, C_2, \ldots of probabilistic circuits, and real numbers $0 \leq c, s \leq 1$ such that
Merlin-Arthur (MA)

- A language $L \subseteq \{0,1\}^*$ is in MA:
- There exists a uniform sequence C_1, C_2, \ldots of probabilistic circuits, and real numbers $0 \leq c, s \leq 1$ such that
Merlin-Arthur (MA)

- A language $L \subseteq \{0, 1\}^*$ is in MA:
 - There exists a uniform sequence C_1, C_2, \ldots of probabilistic circuits, and real numbers $0 \leq c, s \leq 1$ such that
 - If $x \in L$, then there exists y such that $\text{Prob}(C_{|x|}(x, y) = 1) \geq c$.
 - If $x \not\in L$, then for every y $\text{Prob}(C_{|x|}(x, y) = 1) \leq s$.
Merlin-Arthur (MA)

- A language \(L \subseteq \{0, 1\}^* \) is in MA:

- There exists a uniform sequence \(C_1, C_2, \ldots \) of probabilistic circuits, and real numbers \(0 \leq c, s \leq 1 \) such that

 - If \(x \in L \), then there exists \(y \) such that \(\text{Prob}(C_{|x|}(x, y) = 1) \geq c \).
 - If \(x \notin L \) then for every \(y \) \(\text{Prob}(C_{|x|}(x, y) \leq s) \).
Quantum Merlin-Arthur (QMA)

- A language $L \subseteq \{0,1\}^*$ is in QMA (Quantum Merlin Arthur):

 - If $x \in L$, then there exists $|y\rangle$ such that $\text{Prob}(C|x|(|x\rangle, |y\rangle)) = 1 \geq c$.
 - If $x \notin L$, then for every $|y\rangle$, $\text{Prob}(C|x|(|x\rangle, |y\rangle)) \leq s$.
Quantum Merlin-Arthur (QMA)

- A language \(L \subseteq \{0,1\}^* \) is in QMA (Quantum Merlin Arthur):
 - There exists a uniform sequence \(C_1, C_2, \ldots \) of quantum circuits, and real numbers \(0 \leq c, s \leq 1 \) such that

 \[
 \text{Prob}(C_1|x|, y) = 1 \geq c.
 \]

 If \(x \not\in L \) then for every \(|y\rangle \) \[
 \text{Prob}(C_1|x|, y) \leq s.
 \]
Quantum Merlin-Arthur (QMA)

- A language $L \subseteq \{0,1\}^*$ is in QMA (Quantum Merlin Arthur):
 - There exists a uniform sequence C_1, C_2, \ldots of quantum circuits, and real numbers $0 \leq c, s \leq 1$ such that
 - If $x \in L$, then there exists $|y\rangle$ such that \[\text{Prob}(C|x|(|x\rangle, |y\rangle)) = 1 \geq c. \]
 - If $x \not\in L$, then for every $|y\rangle$ \[\text{Prob}(C|x|(|x\rangle, |y\rangle)) \leq s. \]
Quantum Merlin-Arthur (QMA)

- A language \(L \subseteq \{0, 1\}^* \) is in QMA (Quantum Merlin Arthur):
- There exists a uniform sequence \(C_1, C_2, \ldots \) of quantum circuits, and real numbers \(0 \leq c, s \leq 1 \) such that
 - If \(x \in L \), then there exists \(|y\rangle \) such that \(\text{Prob}(C_{|x|}(|x\rangle, |y\rangle) = 1) \geq c \).
Quantum Merlin-Arthur (QMA)

- A language $L \subseteq \{0, 1\}^*$ is in QMA (Quantum Merlin Arthur):
- There exists a uniform sequence C_1, C_2, \ldots of quantum circuits, and real numbers $0 \leq c, s \leq 1$ such that
 - If $x \in L$, then there exists $|y\rangle$ such that $\text{Prob}(C_{|x|}(|x\rangle, |y\rangle) = 1) \geq c$.
 - If $x \notin L$ then for every $|y\rangle$, $\text{Prob}(C_{|x|}(|x\rangle, |y\rangle) \leq s$.
k-Local Hamiltonian

k-Local Hamiltonian Operator: $H = \sum_j H_j[S_j]$
\textit{k-Local Hamiltonian}

- \textit{k-Local Hamiltonian Operator: } $H = \sum_j H_j[S_j]$
 - Each $H_j[S_j]$ is an Hermitian operator acting on a set S_j of qubits.
k-Local Hamiltonian

- k-Local Hamiltonian Operator: $H = \sum_j H_j[S_j]$
 - Each $H_j[S_j]$ is an Hermitian operator acting on a set S_j of qubits.
 - $|S_j| \leq k$.

Mateus de Oliveira Oliveira (TCS-KTH)
Quantum Computation - Lecture 11 - The Local Hamiltonian Problem
February 20, 2013 5 / 13
k-Local Hamiltonian

- **k-Local Hamiltonian Operator:** $H = \sum_j H_j[S_j]$
 - Each $H_j[S_j]$ is an Hermitian operator acting on a set S_j of qubits.
 - $|S_j| \leq k$.
 - Both H_j and $I - H_j$ are positive semidefinite.
The \(k \)-Local Hamiltonian Problem:

- Given a \(k \)-local Hamiltonian \(H \).
The k-Local Hamiltonian Problem:

- Given a k-local Hamiltonian H.
- With k constant.
The \(k \)-Local Hamiltonian Problem:

- Given a \(k \)-local Hamiltonian \(H \).
- With \(k \) constant.
- and constants \(a, b \) with \(0 \leq a < b, b - a \geq \frac{1}{p(n)} \) for some polyn. \(p \)
The \(k \)-Local Hamiltonian Problem:

- Given a \(k \)-local Hamiltonian \(H \).
- With \(k \) constant.
- and constants \(a, b \) with \(0 \leq a < b \), \(b - a \geq \frac{1}{p(n)} \) for some polyn. \(p \)
- Determine whether:

\(H \) has an eigenvalue not exceeding \(a \).
All eigenvalues of \(H \) are greater than \(b \).
The k-Local Hamiltonian Problem:

- Given a k-local Hamiltonian H.
- With k constant.
- and constants a, b with $0 \leq a < b$, $b - a \geq \frac{1}{p(n)}$ for some polyn. p
- Determine whether:
 - H has an eigenvalue not exceeding a.
The k-Local Hamiltonian Problem:

- Given a k-local Hamiltonian H.
- With k constant.
- and constants a, b with $0 \leq a < b$, $b - a \geq \frac{1}{p(n)}$ for some polyn. p
- Determine whether:
 - H has an eigenvalue not exceeding a.
 - All eigenvalues of H are greater than b.
k-local Hamiltonian is in QMA:

- Let $H = \sum_{i=1}^{r} H_{i}[S_{i}]$

\[\text{Construct a circuit } C \text{ such that when applied to state } |\eta\rangle \in B^{n} \text{ the probability of returning } 1 \text{ is } p = 1 - r - 1 \langle \eta | H | \eta \rangle.\]

- If there exists $|\eta\rangle$ with eigenvalue $\leq a$, \[p = 1 - r - 1 \langle \eta | H | \eta \rangle = 1 - r - 1 \lambda \geq 1 - r - 1 a.\]

- If every eigenvalue of H exceeds b then \[p = 1 - r - 1 \langle \eta | H | \eta \rangle \leq 1 - r - 1 b.\]
k-local Hamiltonian is in QMA:

- Let $H = \sum_{i=1}^{r} H_i[S_i]$
- Construct a circuit C such that when applied to state $|\eta\rangle \in B^n$ the probability of returning 1 is $p = 1 - r^{-1}\langle\eta|H|\eta\rangle$.
k-local Hamiltonian is in QMA:

- Let $H = \sum_{i=1}^{r} H_{i}[S_{i}]$
- Construct a circuit C such that when applied to state $|\eta\rangle \in B^{n}$ the probability of returning 1 is $p = 1 - r^{-1}\langle\eta|H|\eta\rangle$.
- If there exists $|\eta\rangle$ with eigenvalue $\leq a$,

$$p = 1 - r^{-1}\langle\eta|H|\eta\rangle = 1 - r^{-1}\lambda \geq 1 - r^{-1}a$$
k-local Hamiltonian is in QMA:

- Let $H = \sum_{i=1}^{r} H_i[S_i]$
- Construct a circuit C such that when applied to state $|\eta\rangle \in B^n$ the probability of returning 1 is $p = 1 - r^{-1}\langle \eta | H | \eta \rangle$.
- If there exists $|\eta\rangle$ with eigenvalue $\leq a$,
 \[p = 1 - r^{-1}\langle \eta | H | \eta \rangle = 1 - r^{-1}\lambda \geq 1 - r^{-1}a \]
- If every eigenvalue of H exceeds b then
 \[p = 1 - r^{-1}\langle \eta | H | \eta \rangle \leq 1 - r^{-1}b \]
\[H_j = \sum_s \lambda_s |\psi_s\rangle \langle \psi_s| \text{ since } H_j \text{ is positive semidefinite.} \]
• $H_j = \sum_s \lambda_s |\psi_s\rangle \langle \psi_s|$ since H_j is positive semidefinite.

• Since H_j acts on a bounded number of qubits, it can be realized by the unitary:

$$W_j: |\psi_s, 0\rangle \rightarrow |\psi_s\rangle \otimes (\sqrt{\lambda_s} |0\rangle + \sqrt{1 - \lambda_s}) |1\rangle$$
\(H_j = \sum_s \lambda_s |\psi_s \rangle \langle \psi_s| \) since \(H_j \) is positive semidefinite.

Since \(H_j \) acts on a bounded number of qubits, it can be realized by the unitary:

\[
W_j : |\psi_s, 0 \rangle \rightarrow |\psi_s \rangle \otimes (\sqrt{\lambda_s}|0 \rangle + \sqrt{1-\lambda_s})|1 \rangle
\]

This unitary acts on a constant number of qubits: \(S_j \) plus an "answer qubit".
\[H_j = \sum_s \lambda_s |\psi_s\rangle \langle \psi_s| \quad \text{since } H_j \text{ is positive semidefinite.} \]

Since \(H_j \) acts on a bounded number of qubits, it can be realized by the unitary:

\[
W_j : |\psi_s, 0\rangle \rightarrow |\psi_s\rangle \otimes (\sqrt{\lambda_s} |0\rangle + \sqrt{1 - \lambda_s}) |1\rangle
\]

This unitary acts on a constant number of qubits: \(S_j \) plus an "answer qubit".

Exercise: The outcome of \(W_j \) is 1 with probability 1 \(- \langle \eta | H_j | \eta \rangle\)
The Local Hamiltonian Problem

- \(H_j = \sum_s \lambda_s |\psi_s\rangle \langle \psi_s| \) since \(H_j \) is positive semidefinite.

- Since \(H_j \) acts on a bounded number of qubits, it can be realized by the unitary:

\[
W_j : |\psi_s, 0\rangle \rightarrow |\psi_s\rangle \otimes (\sqrt{\lambda_s}|0\rangle + \sqrt{1-\lambda_s})|1\rangle
\]

- This unitary acts on a constant number of qubits: \(S_j \) plus an ”answer qubit”.

- Exercise: The outcome of \(W_j \) is 1 with probability \(1 - \langle \eta | H_j | \eta \rangle \)

- Putting all together: Apply the operator \(\sum_j |j\rangle \langle j| \otimes W_j \) to the state

\[
\frac{1}{\sqrt{r}} \sum_j |j\rangle \otimes |\eta, 0\rangle
\]
\[H_j = \sum_s \lambda_s |\psi_s\rangle\langle\psi_s| \] since \(H_j \) is positive semidefinite.

Since \(H_j \) acts on a bounded number of qubits, it can be realized by the unitary:

\[W_j : |\psi_s, 0\rangle \rightarrow |\psi_s\rangle \otimes (\sqrt{\lambda_s} |0\rangle + \sqrt{1-\lambda_s}) |1\rangle \]

This unitary acts on a constant number of qubits: \(S_j \) plus an ”answer qubit”.

Exercise: The outcome of \(W_j \) is 1 with probability \(1 - \langle \eta | H_j | \eta \rangle \)

Putting all together: Apply the operator \(\sum_j |j\rangle\langle j| \otimes W_j \) to the state

\[\frac{1}{\sqrt{r}} \sum_j |j\rangle \otimes |\eta, 0\rangle \]

Then the probability of getting outcome 1 is

\[\sum_j \frac{1}{r} (1 - \langle \eta | H | \eta \rangle) = 1 - r^{-1} \langle \eta | H | \eta \rangle \]
Local Hamiltonian is QMA-complete:

- Given a circuit $U = U_L ... U_1$
Local Hamiltonian is QMA-complete:

- Given a circuit $U = U_L \ldots U_1$
- Define a Hamiltonian $H = H_{in} + H_{prop} + H_{out}$ acting on N qubits + a clock register on $L + 1$ qubits.

The vector $|\eta\rangle$ minimizing $\langle \eta | H | \eta \rangle$ will be:

$|\eta\rangle = \frac{1}{\sqrt{L + 1}}$

In other words $|\eta\rangle$ will encode the whole history of execution of the quantum circuit.

H_{in} corresponds to the condition that at step 0, all the qubits, but m are in state $|0\rangle$.

$H_{in} = (N \sum_{s=m+1}^N \Pi_s(1)) \otimes |0\rangle \langle 0|$.

Here $\Pi_s(b)$ is the projection onto the space where the s-th qubit is b.

The term H_{in} adds a penalization of 1 to the function $\langle \eta | H | \eta \rangle$ whenever the qubit s is in state $|1\rangle$ while the counter is in state $|0\rangle$.
Local Hamiltonian is QMA-complete:

- Given a circuit $U = U_L...U_1$
- Define a Hamiltonian $H = H_{in} + H_{prop} + H_{out}$ acting on N qubits + a clock register on $L + 1$ qubits.
- The vector $|\eta\rangle$ minimizing $\langle \eta | H | \eta \rangle$ will be:

$$|\eta\rangle = \frac{1}{\sqrt{L + 1}}$$
Local Hamiltonian is QMA-complete:

- Given a circuit $U = U_L...U_1$
- Define a Hamiltonian $H = H_{in} + H_{prop} + H_{out}$ acting on N qubits + a clock register on $L + 1$ qubits.
- The vector $|\eta\rangle$ minimizing $\langle \eta | H | \eta \rangle$ will be:
 $$|\eta\rangle = \frac{1}{\sqrt{L + 1}}$$

- In other words $|\eta\rangle$ will encode the whole history of execution of the quantum circuit.
Local Hamiltonian is QMA-complete:

- Given a circuit \(U = U_L...U_1 \)
- Define a Hamiltonian \(H = H_{in} + H_{prop} + H_{out} \) acting on \(N \) qubits + a clock register on \(L + 1 \) qubits.
- The vector \(|\eta\rangle \) minimizing \(\langle \eta | H | \eta \rangle \) will be:
 \[
 |\eta\rangle = \frac{1}{\sqrt{L+1}}
 \]

- In other words \(|\eta\rangle \) will encode the whole history of execution of the quantum circuit.
- \(H_{in} \) corresponds to the condition that at step 0, all the qubits, but \(m \) are in state \(|0\rangle \)
 \[
 H_{in} = \left(\sum_{s=m+1}^{N} \Pi_s^{(1)} \right) \otimes |0\rangle \langle 0|
 \]
Local Hamiltonian is QMA-complete:

- Given a circuit $U = U_L...U_1$
- Define a Hamiltonian $H = H_{in} + H_{prop} + H_{out}$ acting on N qubits + a clock register on $L + 1$ qubits.
- The vector $|\eta\rangle$ minimizing $\langle \eta | H | \eta \rangle$ will be:
 $$|\eta\rangle = \frac{1}{\sqrt{L + 1}}$$

- In other words $|\eta\rangle$ will encode the whole history of execution of the quantum circuit.
- H_{in} corresponds to the condition that at step 0, all the qubits, but m are in state $|0\rangle$
 $$H_{in} = \left(\sum_{s=m+1}^{N} \Pi_s^{(1)} \right) \otimes |0\rangle \langle 0|$$
- Here $\Pi_s^{(b)}$ is the projection onto the space where the s-th qubit is b.
Local Hamiltonian is QMA-complete:

- Given a circuit $U = U_L...U_1$
- Define a Hamiltonian $H = H_{in} + H_{prop} + H_{out}$ acting on N qubits + a clock register on $L + 1$ qubits.
- The vector $|\eta\rangle$ minimizing $\langle \eta | H | \eta \rangle$ will be:

$$|\eta\rangle = \frac{1}{\sqrt{L + 1}}$$

- In other words $|\eta\rangle$ will encode the whole history of execution of the quantum circuit.
- H_{in} corresponds to the condition that at step 0, all the qubits, but m are in state $|0\rangle$

$$H_{in} = \left(\sum_{s=m+1}^{N} \Pi_s^{(1)} \right) \otimes |0\rangle \langle 0|$$

- Here $\Pi_s^{(b)}$ is the projection onto the space where the s-th qubit is b.
- The term H_{in} adds a penalization of 1 to the function $\langle \eta | H | \eta \rangle$ whenever the qubit s is in state $|1\rangle$ while the counter is in state $|0\rangle$.
$H_{out} = \Pi_{1}^{(0)} \otimes |L\rangle\langle L|$
\[H_{out} = \Pi^{(0)}_1 \otimes |L\rangle\langle L| \]

Assume that the output qubit is the qubit number 1
$H_{out} = \Pi_1^{(0)} \otimes |L\rangle\langle L|$

Assume that the output qubit is the qubit number 1

Add a penalization whenever the qubit 1 is $|0\rangle$ in the end of the computation.
\[H_{\text{prop}} = \sum_{j=1}^{L} H_j \]
The Local Hamiltonian Problem

\[H_{\text{prop}} = \sum_{j=1}^{L} H_j \]

\[H_j = -\frac{1}{2} U_j \otimes |j\rangle\langle j - 1| - \frac{1}{2} U_j^\dagger \otimes |j - 1\rangle\langle j| + \frac{1}{2} I(|j\rangle\langle j| + |j - 1\rangle\langle j - 1|) \]
\(H_{prop} = \sum_{j=1}^{L} H_j \)

\[
H_j = -\frac{1}{2} U_j \otimes |j\rangle\langle j-1| - \frac{1}{2} U_j^\dagger \otimes |j-1\rangle\langle j| + \frac{1}{2} I (|j\rangle\langle j| + |j-1\rangle\langle j-1|)
\]

- \(H_{prop} \) penalizes a wrong propagation.
The Local Hamiltonian Problem

- $H_{prop} = \sum_{j=1}^{L} H_j$

- $H_j = -\frac{1}{2} U_j \otimes |j\rangle\langle j - 1| - \frac{1}{2} U_j^\dagger \otimes |j - 1\rangle\langle j| + \frac{1}{2} I(|j\rangle\langle j| + |j - 1\rangle\langle j - 1|)$

- H_{prop} penalizes a wrong propagation.

- Each term H_j corresponds to a transition from $j - 1$ to j.
Change of Basis:

\[W = \sum_{j=0}^{L} U_j \ldots U_1 \otimes |j\rangle\langle j| \]

\(W \) is a measurement operator that respects the value of the counter \(|j\rangle \).

The vector \(|\eta\rangle \) corresponding to the propagation will be equal to \(W |\tilde{\eta}\rangle \).

Let's see the action of \(W \) on the Hamiltonian \(H \):

\[\tilde{H} = W^\dagger HW \]

\[\tilde{H}^{\text{in}} = W^\dagger H^{\text{in}} W \]

\[\tilde{H}^{\text{out}} = W^\dagger H^{\text{out}} W = (U_j^\dagger \Pi(0) U_j) \otimes |j\rangle\langle j| \]

\[\tilde{H}^{\text{prop}} = W^\dagger H^{\text{prop}} W \]

\[\sum_j W^\dagger H_j W = \sum_j W^\dagger \times W \]

\[\star \]

\[W^\dagger H_j W = I \otimes |j\rangle\langle j| - 1 \]

\[\star \]

Thus \(W^\dagger H_j W = I \otimes E_j \) where

\[E_j = \frac{1}{2}(|j-1\rangle\langle j-1| - |j-1\rangle\langle j| - |j-1\rangle\langle j| - |j-1\rangle\langle j-1|) \]

\[\star \]

\[W^\dagger H^{\text{prop}} W = I \otimes E \]

where

\[E = \sum_j E_j \]
Change of Basis:

- \(W = \sum_{j=0}^{L} U_j \ldots U_1 \otimes |j\rangle\langle j| \)
- \(W \) is a measurement operator that respects the value of the counter \(|j\rangle \).

\[W \text{ is a measurement operator that respects the value of the counter } |j\rangle. \]
Change of Basis:

- \(W = \sum_{j=0}^{L} U_j \cdots U_1 \otimes |j\rangle\langle j| \)
- \(W \) is a measurement operator that respects the value of the counter \(|j\rangle \).
- The vector \(|\eta\rangle \) corresponding to the propagation will be equal to \(W|\tilde{\eta}\rangle \)
Change of Basis:

- \(W = \sum_{j=0}^{L} U_j \cdots U_1 \otimes |j\rangle\langle j| \)
- \(W \) is a measurement operator that respects the value of the counter \(|j\rangle \).
- The vector \(|\eta\rangle \) corresponding to the propagation will be equal to \(W|\tilde{\eta}\rangle \)
- Let's see the action of \(W \) on the Hamiltonian \(H \):

\[
\begin{align*}
W^\dagger H W &= W^\dagger H_{\text{in}} W = \left(U_1^\dagger \Pi (0) U_1 \right) \otimes |L\rangle\langle L| \\
W^\dagger H_{\text{prop}} W &= \sum_j W^\dagger U_j H_j W = I \otimes |j-1\rangle\langle j-1| \quad \text{(Check!)}
\end{align*}
\]

Thus \(W^\dagger H_j W = I \otimes E_j \) where \(E_j = \frac{1}{2}(|j-1\rangle\langle j-1| - |j-1\rangle\langle j-1| - |j\rangle\langle j-1| + |j\rangle\langle j-1|) \)
Change of Basis:

- $W = \sum_{j=0}^{L} U_j \cdots U_1 \otimes |j\rangle\langle j|$
- W is a measurement operator that respects the value of the counter $|j\rangle$.
- The vector $|\eta\rangle$ corresponding to the propagation will be equal to $W|\tilde{\eta}\rangle$.
- Let's see the action of W on the Hamiltonian H:
 - $\tilde{H} = W^\dagger H W$
Change of Basis:

- $W = \sum_{j=0}^{L} U_j \cdots U_1 \otimes |j\rangle \langle j|
- W is a measurement operator that respects the value of the counter $|j\rangle$.
- The vector $|\eta\rangle$ corresponding to the propagation will be equal to $W|\tilde{\eta}\rangle$.
- Let's see the action of W on the Hamiltonian H:
 - $\tilde{H} = W^\dagger HW$
 - $\tilde{H}_{in} = W^\dagger H_{in} W = H_{in}$
Change of Basis:

- \(W = \sum_{j=0}^{L} U_j \ldots U_1 \otimes |j\rangle\langle j| \)
- \(W \) is a measurement operator that respects the value of the counter \(|j\rangle \).
- The vector \(|\eta\rangle \) corresponding to the propagation will be equal to \(W|\tilde{\eta}\rangle \)
- Lets see the action of \(W \) on the Hamiltonian \(H \):
 - \(\tilde{H} = W^\dagger H W \)
 - \(\tilde{H}_{in} = W^\dagger H_{in} W = H_{in} \)
 - \(\tilde{H}_{out} = W^\dagger H_{out} W = (U^\dagger \Pi_1^{(0)} U) \otimes |L\rangle\langle L| \)
Change of Basis:

- \(\mathcal{W} = \sum_{j=0}^{L} U_j \ldots U_1 \otimes |j\rangle\langle j| \)
- \(\mathcal{W} \) is a measurement operator that respects the value of the counter \(|j\rangle \).
- The vector \(|\eta\rangle \) corresponding to the propagation will be equal to \(\mathcal{W}|\tilde{\eta}\rangle \).
- Let's see the action of \(\mathcal{W} \) on the Hamiltonian \(\mathcal{H} \):
 - \(\tilde{\mathcal{H}} = \mathcal{W}^\dagger \mathcal{H} \mathcal{W} \)
 - \(\tilde{\mathcal{H}}_{\text{in}} = \mathcal{W}^\dagger \mathcal{H}_{\text{in}} \mathcal{W} = \mathcal{H}_{\text{in}} \)
 - \(\tilde{\mathcal{H}}_{\text{out}} = \mathcal{W}^\dagger \mathcal{H}_{\text{out}} \mathcal{W} = (U^\dagger \Pi_1^{(0)} U) \otimes |L\rangle\langle L| \)
 - \(\tilde{\mathcal{H}}_{\text{prop}} = \mathcal{W}^\dagger \mathcal{H}_{\text{prop}} \mathcal{W} = \sum_j \mathcal{W}^\dagger H_j \mathcal{W} \)
Change of Basis:

- \(W = \sum_{j=0}^{L} U_j \cdots U_1 \otimes |j\rangle \langle j| \)
- \(W \) is a measurement operator that respects the value of the counter \(|j\rangle\).
- The vector \(|\eta\rangle\) corresponding to the propagation will be equal to \(W|\tilde{\eta}\rangle\).
- Let’s see the action of \(W \) on the Hamiltonian \(H \):
 - \(\tilde{H} = W^\dagger HW \)
 - \(\tilde{H}_{in} = W^\dagger H_{in} W = H_{in} \)
 - \(\tilde{H}_{out} = W^\dagger H_{out} W = (U^\dagger U_1^{(i)}) \otimes |L\rangle \langle L| \)
 - \(\tilde{H}_{prop} = W^\dagger H_{prop} W = \sum_j W^\dagger H_j W \)
 - \(W^\dagger (U_j \otimes |j\rangle \langle j - 1|) W = I \otimes |j\rangle \langle j - 1| \) (Check!)
Change of Basis:

- \(W = \sum_{j=0}^{L} U_j \cdots U_1 \otimes |j\rangle \langle j| \)
- \(W \) is a measurement operator that respects the value of the counter \(|j\rangle \).
- The vector \(|\eta\rangle \) corresponding to the propagation will be equal to \(W|\tilde{\eta}\rangle \).

Let's see the action of \(W \) on the Hamiltonian \(H \):

\[
\begin{align*}
\tilde{H} &= W^\dagger H W \\
\tilde{H}_{in} &= W^\dagger H_{in} W = H_{in} \\
\tilde{H}_{out} &= W^\dagger H_{out} W = (U^\dagger \Pi_1^{(0)} U) \otimes |L\rangle \langle L| \\
\tilde{H}_{prop} &= W^\dagger H_{prop} W = \sum_j W^\dagger H_j W \\
&\quad \quad \bullet \quad W^\dagger (U_j \otimes |j\rangle \langle j - 1|) W = I \otimes |j\rangle \langle j - 1| \text{ (Check!)} \\
&\quad \quad \bullet \quad W^\dagger (U_j^\dagger \otimes |j - 1\rangle |j\rangle) = I \otimes |j - 1\rangle \langle j|
\end{align*}
\]
Change of Basis:

- \(W = \sum_{j=0}^{L} U_j \otimes |j\rangle\langle j| \)
- \(W \) is a measurement operator that respects the value of the counter \(|j\rangle \).
- The vector \(|\eta\rangle \) corresponding to the propagation will be equal to \(W|\tilde{\eta}\rangle \)
- Lets see the action of \(W \) on the Hamiltonian \(H \):
 - \(\tilde{H} = W^\dagger H W \)
 - \(\tilde{H}_{in} = W^\dagger H_{in} W = H_{in} \)
 - \(\tilde{H}_{out} = W^\dagger H_{out} W = (U^\dagger \Pi_1^{(0)} U) \otimes |L\rangle\langle L| \)
 - \(\tilde{H}_{prop} = W^\dagger H_{prop} W = \sum_j W^\dagger H_j W \)
 - \(W^\dagger (U_j \otimes |j\rangle\langle j - 1|) W = I \otimes |j\rangle\langle j - 1| \) (Check!)
 - \(W^\dagger (U_j^\dagger \otimes |j - 1\rangle\langle j|) = I \otimes |j - 1\rangle\langle j| \)
 - \(W^\dagger (I \otimes (|j - 1\rangle\langle j - 1| + |j\rangle\langle j|)) W = I \otimes (|j\rangle\langle j| + |j - 1\rangle\langle j - 1|) \)
Change of Basis:

- \(W = \sum_{j=0}^{L} U_j \cdots U_1 \otimes |j\rangle \langle j| \)
- \(W \) is a measurement operator that respects the value of the counter \(|j\rangle \).
- The vector \(|\eta\rangle \) corresponding to the propagation will be equal to \(W|\tilde{\eta}\rangle \)
- Let's see the action of \(W \) on the Hamiltonian \(H \):
 - \(\tilde{H} = W^\dagger HW \)
 - \(\tilde{H}_{in} = W^\dagger H_{in} W = H_{in} \)
 - \(\tilde{H}_{out} = W^\dagger H_{out} W = (U^\dagger P^{(0)}_1 U) \otimes |L\rangle \langle L| \)
 - \(\tilde{H}_{prop} = W^\dagger H_{prop} W = \sum_j W^\dagger H_j W \)
 - \(W^\dagger (U_j \otimes |j\rangle \langle j - 1|) W = I \otimes |j\rangle \langle j - 1| \) (Check!)
 - \(W^\dagger (U_j^\dagger \otimes |j - 1\rangle \langle j|) = I \otimes |j - 1\rangle \langle j| \)
 - \(W^\dagger (I \otimes (|j - 1\rangle \langle j - 1| + |j\rangle \langle j|)) W = I \otimes (|j\rangle \langle j| + |j - 1\rangle \langle j - 1|) \)
 - Thus \(W^\dagger H_j W = I \otimes E_j \) where
 \[
 E_j = \frac{1}{2} (|j - 1\rangle \langle j - 1| - |j - 1\rangle \langle j - 1| - |j\rangle \langle j - 1| + |j\rangle \langle j|) \]
Change of Basis:

- \(W = \sum_{j=0}^{L} U_j \ldots U_1 \otimes |j\rangle\langle j| \)
- \(W \) is a measurement operator that respects the value of the counter \(|j\rangle \).
- The vector \(|\eta\rangle \) corresponding to the propagation will be equal to \(W|\tilde{\eta}\rangle \)
- Let's see the action of \(W \) on the Hamiltonian \(H \):
 - \(\tilde{H} = W^\dagger HW \)
 - \(\tilde{H}_{in} = W^\dagger H_{in} W = H_{in} \)
 - \(\tilde{H}_{out} = W^\dagger H_{out} W = (U^\dagger \Pi_1^{(0)} U) \otimes |L\rangle\langle L| \)
 - \(\tilde{H}_{prop} = W^\dagger H_{prop} W = \sum_j W^\dagger H_j W \)
 - \(W^\dagger (U_j \otimes |j\rangle\langle j - 1|) W = I \otimes |j\rangle\langle j - 1| \) (Check!)
 - \(W^\dagger (U_j^\dagger \otimes |j - 1\rangle\langle j|) = I \otimes |j - 1\rangle\langle j| \)
 - \(W^\dagger (I \otimes (|j - 1\rangle\langle j - 1| + |j\rangle\langle j|)) W = I \otimes (|j\rangle\langle j| + |j - 1\rangle\langle j - 1|) \)
 - Thus \(W^\dagger H_j W = I \otimes E_j \) where
 \[
 E_j = \frac{1}{2}(|j - 1\rangle\langle j - 1| - |j - 1\rangle\langle j - 1| - |j\rangle\langle j - 1| + |j\rangle\langle j|)
 \]
 - \(W^\dagger H_{prop} W = I \otimes E \) where \(E = \sum_j E_j \)
If the answer is YES there is a small eigenvalue:

- Suppose the original circuit gives the answer YES with probability greater than $1 - \varepsilon$ on some input vector $|\chi\rangle$
If the answer is YES there is a small eigenvalue:

- Suppose the original circuit gives the answer YES with probability greater than $1 - \varepsilon$ on some input vector $|\chi\rangle$
- Then the Probability of measuring 0 is

$$P(0) = \langle \chi, 0 | U^\dagger \Pi_1^{(0)} U | \chi, 0 \rangle \leq \varepsilon$$
If the answer is YES there is a small eigenvalue:

- Suppose the original circuit gives the answer YES with probability greater than $1 - \varepsilon$ on some input vector $|\chi\rangle$
- Then the Probability of measuring 0 is

$$P(0) = \langle \chi, 0 | U^\dagger \Pi_1^{(0)} U | \chi, 0 \rangle \leq \varepsilon$$

- We prove that \tilde{H} has a small eigenvalue. Since the eigenvalues are preserved on change of basis H will also have such a small eigenvalue.
If the answer is YES there is a small eigenvalue:

- Suppose the original circuit gives the answer YES with probability greater than $1 - \varepsilon$ on some input vector $|\chi\rangle$
- Then the Probability of measuring 0 is

$$P(0) = \langle \chi, 0 | U^\dagger \Pi_1^{(0)} U | \chi, 0 \rangle \leq \varepsilon$$

- We prove that \tilde{H} has a small eigenvalue. Since the eigenvalues are preserved on change of basis H will also have such a small eigenvalue.
- Let $|\tilde{\eta}\rangle = |\chi, 0\rangle \otimes |\psi\rangle$ where
 - $|\psi\rangle = \frac{1}{\sqrt{L+1}} \sum_{j=0}^{1} |j\rangle$
If the answer is YES there is a small eigenvalue:

- Suppose the original circuit gives the answer YES with probability greater than $1 - \varepsilon$ on some input vector $|\chi\rangle$
- Then the Probability of measuring 0 is

$$P(0) = \langle \chi, 0 | U^\dagger \Pi_1^{(0)} U | \chi, 0 \rangle \leq \varepsilon$$

- We prove that \tilde{H} has a small eigenvalue. Since the eigenvalues are preserved on change of basis H will also have such a small eigenvalue.
- Let $|\tilde{\eta}\rangle = |\chi, 0\rangle \otimes |\psi\rangle$ where
 - $|\psi\rangle = \frac{1}{\sqrt{L+1}} \sum_{j=0}^{1} |j\rangle$
- Check: $E|\psi\rangle = 0$. Then $\langle \tilde{\eta} | \tilde{H}_{prop} | \tilde{\eta} \rangle = 0 = \langle \tilde{\eta} | \tilde{H}_j | \tilde{\eta} \rangle$
If the answer is YES there is a small eigenvalue:

- Suppose the original circuit gives the answer YES with probability greater than $1 - \varepsilon$ on some input vector $|\chi\rangle$
- Then the Probability of measuring 0 is

$$P(0) = \langle \chi, 0 | U^\dagger \Pi_1^{(0)} U | \chi, 0 \rangle \leq \varepsilon$$

- We prove that \tilde{H} has a small eigenvalue. Since the eigenvalues are preserved on change of basis H will also have such a small eigenvalue.
- Let $|\tilde{\eta}\rangle = |\chi, 0\rangle \otimes |\psi\rangle$ where
 - $|\psi\rangle = \frac{1}{\sqrt{L+1}} \sum_{j=0}^{1} |j\rangle$
- Check: $E|\psi\rangle = 0$. Then $\langle \tilde{\eta} | \tilde{H}_{prop} | \tilde{\eta} \rangle = 0 = \langle \tilde{\eta} | \tilde{H}_j | \tilde{\eta} \rangle$
- Check: $\langle \tilde{\eta} | \tilde{H}_{in} | \tilde{\eta} \rangle = 0$ since all auxiliary qubits are set to 0
If the answer is YES there is a small eigenvalue:

- Suppose the original circuit gives the answer YES with probability greater than $1 - \varepsilon$ on some input vector $|\chi\rangle$
- Then the Probability of measuring 0 is

$$P(0) = \langle \chi, 0 | U^\dagger \Pi_1^{(0)} U |\chi, 0 \rangle \leq \varepsilon$$

- We prove that \tilde{H} has a small eigenvalue. Since the eigenvalues are preserved on change of basis H will also have such a small eigenvalue.

- Let $|\tilde{\eta}\rangle = |\chi, 0\rangle \otimes |\psi\rangle$ where

 $$|\psi\rangle = \frac{1}{\sqrt{L+1}} \sum_{j=0}^{1} |j\rangle$$

- Check: $E|\psi\rangle = 0$. Then $\langle \tilde{\eta} | \tilde{H}_{prop} |\tilde{\eta}\rangle = 0 = \langle \tilde{\eta} | \tilde{H}_j |\tilde{\eta}\rangle$
- Check: $\langle \tilde{\eta} | \tilde{H}_{in} |\tilde{\eta}\rangle = 0$ since all auxiliary qubits are set to 0
- Finally

$$\langle \tilde{\eta} | \tilde{H}_{out} |\tilde{\eta}\rangle = \langle \tilde{\eta} | (U^\dagger \Pi_1^{(0)} U \otimes |L\rangle\langle L|) |\tilde{\eta}\rangle = P(0) \frac{1}{L+1} \leq \frac{\varepsilon}{L+1}$$