Quantum Computation - Lecture 10 - Approximation of the Jones Polynomial

Mateus de Oliveira Oliveira

TCS-KTH

February 20, 2013
Knots
• Knots
• Invariants for knots
Knots

Invariants for knots

The Jones Polynomial
Overview

Knots

Invariants for knots

The Jones Polynomial

Approximating the JP
To each PLUS-ORIENTED-CROSSING assign $+1$.
To each PLUS-ORIENTED-CROSSING assign +1.
To each MINUS-ORIENTED-CROSSING assign −1.
To each PLUS-ORIENTED-CROSSING assign $+1$.

To each MINUS-ORIENTED-CROSSING assign -1.

How to easily see?

- Rotate the head of the line on the top towards the head of the line on the bottom.
- If the rotation is counterclockwise, assign $+1$.
- If the rotation is clockwise, assign -1.

Writhe of A Knot: $w(L) = \text{sum of all signs}$
To each PLUS-ORIENTED-CROSSING assign $+1$.
To each MINUS-ORIENTED-CROSSING assign -1.

How to easily see?

- Rotate the head of the line on the top towards the head of the line on the bottom.
To each PLUS-ORIENTED-CROSSING assign $+1$.
To each MINUS-ORIENTED-CROSSING assign -1.
How to easily see?
 ▶ Rotate the head of the line on the top towards the head of the line on the bottom.
 ▶ If the rotation is counterclockwise, assign $+1$.
To each PLUS-ORIENTED-CROSSING assign $+1$.
To each MINUS-ORIENTED-CROSSING assign -1.
How to easily see?
- Rotate the head of the line on the top towards the head of the line on the bottom.
- If the rotation is counterclockwise, assign $+1$
- If the rotation is clockwise, assign -1
To each PLUS-ORIENTED-CROSSING assign $+1$.

To each MINUS-ORIENTED-CROSSING assign -1.

How to easily see?

- Rotate the head of the line on the top towards the head of the line on the bottom.
- If the rotation is counterclockwise, assign $+1$.
- If the rotation is clockwise, assign -1.

Writhe of A Knot: $w(L) =$ sum of all signs.
\(\langle L \rangle \) is a polynomial in \(A \), where we make \(A^{-4} = t \).
\(\langle L \rangle \) is a polynomial in \(A \), where we make \(A^{-4} = t \).

State \(\sigma \): Replace each CROSSING-MINUS for \(\{ \bigcup, || \} \).
\begin{itemize}
 \item \(\langle L \rangle \) is a polynomial in \(A \), where we make \(A^{-4} = t \).
 \item State \(\sigma \): Replace each CROSSING-MINUS for \(\{ \cup, \mid \} \).
 \item \(\sigma(L) \):
\end{itemize}
\[\langle L \rangle \text{ is a polynomial in } A, \text{ where we make } A^{-4} = t. \]

State \(\sigma \): Replace each CROSSING-MINUS for \(\{\cup, \mid\} \).

\(\sigma(L) \):

- \(\sigma^+ \): Number of crossings for which \(\sigma \) chooses \(\cup \).
\(\langle L \rangle \) is a polynomial in \(A \), where we make \(A^{-4} = t \).

State \(\sigma \): Replace each CROSSING-MINUS for \(\{ \bigcup, || \} \).

\(\sigma(L) \):

- \(\sigma^+ \): Number of crossings for which \(\sigma \) chooses \(\bigcup \)
- \(\sigma^- \): Number of crossings for which \(\sigma \) chooses \(|| \)
\[\langle L \rangle \text{ is a polynomial in } A, \text{ where we make } A^{-4} = t. \]

State \(\sigma \): Replace each CROSSING-MINUS for \(\{\cup, ||\} \).

\(\sigma(L) \):

- \(\sigma^+ \): Number of crossings for which \(\sigma \) chooses \(\cup \)
- \(\sigma^- \): Number of crossings for which \(\sigma \) chooses \(|| \)
- \(|\sigma| \): Number of closed loops after the substitution given by sigma.
\[\langle L \rangle \] is a polynomial in \(A \), where we make \(A^{-4} = t \).

State \(\sigma \): Replace each CROSSING-MINUS for \(\{\cup, \|\} \).

\(\sigma(L) \):

- \(\sigma^+ \): Number of crossings for which \(\sigma \) chooses \(\cup \)
- \(\sigma^- \): Number of crossings for which \(\sigma \) chooses \(\| \)
- \(|\sigma| \): Number of closed loops after the substitution given by sigma.
- \(\sigma(L) = A^{\sigma^+-\sigma^-} d^{|\sigma|-1} \).
• $\langle L \rangle$ is a polynomial in A, where we make $A^{-4} = t$.

• State σ: Replace each CROSSING-MINUS for $\{\cup, ||\}$.

• $\sigma(L)$:

 - σ^+: Number of crossings for which σ chooses \cup
 - σ^-: Number of crossings for which σ chooses $||$
 - $|\sigma|$: Number of closed loops after the substitution given by sigma.
 - $\sigma(L) = A^{\sigma^+ - \sigma^-} d^{|\sigma|-1}$.
 - Kauffman bracket polynomial:

$$\langle L \rangle = \sum_{all\ states \ \sigma} \sigma(L)$$
Jones Polynomial:

\[V_L(t) = V_L(A^{-4}) = (-A)^{3w(L)} \langle L \rangle \] \hspace{1cm} (1)

- \(w(L) \) is the writhe
Jones Polynomial:

\[V_L(t) = V_L(A^{-4}) = (-A)^{3w(L)} \langle L \rangle \] \hspace{1cm} (1)

- \(w(L) \) is the writhe
- \(\langle L \rangle \) is the Kauffman Bracket ignoring the orientation.
r dimensional representation Φ of an algebra: Linear mapping from the algebra into the set of $r \times r$ complex matrices M_r, such that $\Phi(XY) = \Phi(X)\Phi(Y)$.

Obs: If an algebra is specified by a set of generators, then the representation may be specified by the images of the generators. In that case these images should satisfy the same relations.
r dimensional representation Φ of an algebra: Linear mapping from the algebra into the set of $r \times r$ complex matrices M_r, such $\Phi(XY) = \Phi(X)\Phi(Y)$.

Obs: If an algebra is specified by a set of generators, then the representation may be specified by the images of the generators. In that case these images should satisfy the same relations.
• r dimensional representation Φ of an algebra: Linear mapping from the algebra into the set of $r \times r$ complex matrices M_r, such that $\Phi(XY) = \Phi(X)\Phi(Y)$.

• Obs: If an algebra is specified by a set of generators, then the representation may be specified by the images of the generators.
- r dimensional representation Φ of an algebra: Linear mapping from the algebra into the set of $r \times r$ complex matrices M_r, such that $\Phi(XY) = \Phi(X)\Phi(Y)$.

- Obs: If an algebra is specified by a set of generators, then the representation may be specified by the images of the generators.

- In that case these images should satisfy the same relations.
\(B_n: \) group with generators \(\{1, \sigma_1, \sigma_2, \ldots, \sigma_{n-1}\} \) and relations
B_n: group with generators $\{1, \sigma_1, \sigma_2, \ldots, \sigma_{n-1}\}$ and relations

- $\sigma_i \sigma_j$ for $|i - j| \geq 2$
- B_n: group with generators $\{1, \sigma_1, \sigma_2, \ldots, \sigma_{n-1}\}$ and relations
 - $\sigma_i \sigma_j$ for $|i - j| \geq 2$
 - $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$
Let $n \in \mathbb{N}$ and $d \in \mathbb{C}$ then the Temperley-Lieb algebra $TL_n(d)$ is the algebra generated by $\{1, E_1, ..., E_{n-1}\}$ with relations
Let \(n \in \mathbb{N} \) and \(d \in \mathbb{C} \) then the Temperley-Lieb algebra \(TL_n(d) \) is the algebra generated by \(\{1, E_1, \ldots, E_{n-1}\} \) with relations

- \(E_i E_j = E_j E_i \), \(|i - j| \geq 2 \)
- \(E_i E_i \pm 1 = E_i \)
- \(E_i^2 = d E_i \)
Let $n \in \mathbb{N}$ and $d \in \mathbb{C}$ then the Temperley-Lieb algebra $TL_n(d)$ is the algebra generated by $\{1, E_1, \ldots, E_{n-1}\}$ with relations

1. $E_i E_j = E_j E_i$, $|i - j| \geq 2$
2. $E_i E_{i \pm 1} E_i = E_i$
Let $n \in \mathbb{N}$ and $d \in \mathbb{C}$ then the Temperley-Lieb algebra $TL_n(d)$ is the algebra generated by $\{1, E_1, \ldots, E_{n-1}\}$ with relations

- $E_i E_j = E_j E_i$, $|i - j| \geq 2$
- $E_i E_{i \pm 1} E_i = E_i$
- $E_i^2 = d E_i$
\[\psi(E_i) = \]

\[
\begin{array}{c}
\hline
& & & \\
1 & i & i+1 & n \\
\hline
& & & \\
\end{array}
\]
It is possible to represent the braid group B_n inside the Temperley-Lieb algebra $TL_n(d)$.
It is possible to represent the braid group B_n inside the Temperley-Lieb algebra $TL_n(d)$.

Chose a complex number A such that $d = -A^2 - A^{-2}$.
It is possible to represent the braid group B_n inside the Temperley-Lieb algebra $TL_n(d)$.

Chose a complex number A such that $d = -A^2 - A^{-2}$.

Then $\rho_A : B_n \to TL_n(d)$ where $\rho_A(\sigma_i) = AE_i + A^{-1}I$ is a representation of B_n into $TL_n(d)$.

Exercise:

$\rho_A(\sigma_j) \rho_A(\sigma_j) = I$ for $|i - j| > 1$

$\rho_A(\sigma_i) \rho_A(\sigma_i+1) \rho_A(\sigma_i) = \rho_A(\sigma_i+1) \rho_A(\sigma_i) \rho_A(\sigma_i+1)$

Continuing, it is possible to represent B_n via unitary matrices. Given a representation τ of $TL_n(d)$ such that $\tau(E_i) = \tau(E_i)^\dagger$ for each of the generators E_i.

Exercise: Show that $\tau(\rho_A(\sigma_i)) \tau(\rho_A(\sigma_i))^\dagger = I$.
It is possible to represent the braid group B_n inside the Temperley-Lieb algebra $TL_n(d)$.

Choose a complex number A such that $d = -A^2 - A^{-2}$.

Then $\rho_A : B_n \rightarrow TL_n(d)$ where $\rho_A(\sigma_i) = AE_i + A^{-1}I$ is a representation of B_n into $TL_n(d)$.

Exercise:
• It is possible to represent the braid group B_n inside the Temperley-Lieb algebra $TL_n(d)$.

• Chose a complex number A such that $d = -A^2 - A^{-2}$.

• Then $\rho_A : B_n \rightarrow TL_n(d)$ where $\rho_A(\sigma_i) = AE_i + A^{-1}I$ is a representation of B_n into $TL_n(d)$.

• Exercise:
 - Show that $\rho_A(\sigma_j)\rho_A(\sigma_j)$ for $|i - j| > 1$
It is possible to represent the braid group B_n inside the Temperley-Lieb algebra $TL_n(d)$.

Chose a complex number A such that $d = -A^2 - A^{-2}$.

Then $\rho_A : B_n \rightarrow TL_n(d)$ where $\rho_A(\sigma_i) = AE_i + A^{-1}I$ is a representation of B_n into $TL_n(d)$.

Exercise:
- Show that $\rho_A(\sigma_j)\rho_A(\sigma_j)$ for $|i - j| > 1$
- Show that $\rho_A(\sigma_i)\rho_A(\sigma_{i+1}\rho_A(\sigma_i)) = \rho_A(\sigma_{i+1})\rho_A(\sigma_i)\rho_A(\sigma_{i+1})$
It is possible to represent the braid group B_n inside the Temperley-Lieb algebra $TL_n(d)$.

Chose a complex number A such that $d = -A^2 - A^{-2}$.

Then $\rho_A : B_n \rightarrow TL_n(d)$ where $\rho_A(\sigma_i) = AE_i + A^{-1}I$ is a representation of B_n into $TL_n(d)$.

Exercise:

- Show that $\rho_A(\sigma_j)\rho_A(\sigma_j)$ for $|i - j| > 1$
- Show that $\rho_A(\sigma_i)\rho_A(\sigma_{i+1}\rho_A(\sigma_i)) = \rho_A(\sigma_{i+1})\rho_A(\sigma_i)\rho_A(\sigma_{i+1})$

Continuing, it is possible to represent B_n via unitary matrices. Given a representation τ of $TL_n(d)$ such that $\tau(E_i) = \tau(E_i)\dagger$ for each of the generators E_i.
It is possible to represent the braid group B_n inside the Temperley-Lieb algebra $TL_n(d)$.

Chose a complex number A such that $d = -A^2 - A^{-2}$.

Then $\rho_A : B_n \rightarrow TL_n(d)$ where $\rho_A(\sigma_i) = AE_i + A^{-1}I$ is a representation of B_n into $TL_n(d)$.

Exercise:

- Show that $\rho_A(\sigma_j)\rho_A(\sigma_j)$ for $|i - j| > 1$
- Show that $\rho_A(\sigma_i)\rho_A(\sigma_{i+1}\rho_A(\sigma_i)) = \rho_A(\sigma_{i+1})\rho_A(\sigma_i)\rho_A(\sigma_{i+1})$

Continuing, it is possible to represent B_n via unitary matrices. Given a representation τ of $TL_n(d)$ such that $\tau(E_i) = \tau(E_i)^\dagger$ for each of the generators E_i.

- Exercise: Show that $\tau(\rho_A(\sigma_i))\tau(\rho_A(\sigma_i))^\dagger = I$
A tangle is a braid in which some of the crossings have been replaced by a picture with the form $\bigcup \bigcap$.
From braids to Knots.
A linear function from an algebra to the complex numbers is called a trace if it satisfies the equation \(tr(XY) = tr(YX) \) for every elements \(X, Y \) in the algebra.

\[
tr() = d^{-4} \quad = d^{-2}
\]
A linear function from an algebra to the complex numbers is called a trace if it satisfies the equation $tr(XY) = tr(YX)$ for every elements X, Y in the algebra.

Markov trace $tr : gTL_n(d) \to \mathbb{C}$ is defined on a Kauffman n-diagram K as follows.

- Connect the n top frontier points to the n bottom frontier points with non-intersecting curves.
- If a is the number of circles resulting from this operation, then $tr(K) = d^{-a} - n$.

By the isomorphism between $TL_n(d)$ and $gTL_n(d)$ this operation also induces a trace on $TL_n(d)$.

\[
tr(\text{\includegraphics[width=0.3\textwidth]{diagram1.png}}) = d^{-4} \\
\text{\includegraphics[width=0.3\textwidth]{diagram2.png}} = d^{-2}
\]
• A linear function from an algebra to the complex numbers is called a trace if it satisfies the equation $tr(XY) = tr(YX)$ for every elements X, Y in the algebra.

• Markov trace $tr : gTL_n(d) \rightarrow \mathbb{C}$ is defined on a Kauffman n-diagram K as follows.

$tr(\text{Diagram 1}) = d^{-4}$

$= d^{-2}$
A linear function from an algebra to the complex numbers is called a trace if it satisfies the equation $tr(XY) = tr(YX)$ for every elements X, Y in the algebra.

Markov trace $tr : gTL_n(d) \to \mathbb{C}$ is defined on a Kauffman n-diagram K as follows.

- Connect the n top frontier points to the n bottom frontier points with non-intersecting curves.
A linear function from an algebra to the complex numbers is called a trace if it satisfies the equation \(tr(XY) = tr(YX) \) for every elements \(X, Y \) in the algebra.

Markov trace \(tr : gTL_n(d) \rightarrow \mathbb{C} \) is defined on a Kauffman \(n \)-diagram \(K \) as follows.

- Connect the \(n \) top frontier points to the \(n \) bottom frontier points with non-intersecting curves.
 If \(a \) is the number of circles resulting from this operation, then \(tr(K) = d^{a-n} \).
A linear function from an algebra to the complex numbers is called a trace if it satisfies the equation \(tr(XY) = tr(YX) \) for every elements \(X, Y \) in the algebra.

Markov trace \(tr : gTL_n(d) \rightarrow \mathbb{C} \) is defined on a Kauffman \(n \)-diagram \(K \) as follows.

1. Connect the \(n \) top frontier points to the \(n \) bottom frontier points with non-intersecting curves. If \(a \) is the number of circles resulting from this operation, then \(tr(K) = d^{a-n} \).

By the isomorphism between \(TL_n(d) \) and \(gTL_n(d) \) this operation also induces a trace on \(TL_n(d) \).
\(tr(1) = 1 \)

Lemma: There is a unique linear map on \(TL_n(d) \) that satisfies the three properties listed above.
\begin{itemize}
 \item $tr(1) = 1$
 \item $tr(XY) = tr(YX)$ for any $X, Y \in TL_n(d)$
\end{itemize}

Lemma: There is a unique linear map on $TL_n(d)$ that satisfies the three properties listed above.
\begin{itemize}
 \item $tr(1) = 1$
 \item $tr(XY) = tr(YX)$ for any $X, Y \in TL_n(d)$
 \item If $X \in TL_{n-1}(d)$ then $tr(XE_{n-1}) = \frac{1}{d} tr(X)$
\end{itemize}

Lemma: There is a unique linear map on $TL_n(d)$ that satisfies the three properties listed above.
Given a braid B, let B^{tr} denote its trace closure. Then

$$V_{B^{tr}}(A^{-4}) = (-A)^{3w(B^{tr})} d^{n-1} \text{tr}(\rho_A(B))$$
Let $|\alpha\rangle$ be a quantum state that can be efficiently prepared.
• Let $|\alpha\rangle$ be a quantum state that can be efficiently prepared.
• Let Q be a unitary gate that can be applied efficiently.
Let $|\alpha\rangle$ be a quantum state that can be efficiently prepared.
Let Q be a unitary gate that can be applied efficiently.
Quantum circuit whose output is a random variable $\{-1, 1\}$ and whose expectation is $Re\langle\alpha|Q|\alpha\rangle$.

1. Start with the state $\sqrt{2}\left(|0\rangle + |1\rangle\right)\otimes|\alpha\rangle$.
2. Apply Q conditioned on the first qubit: $\sqrt{2}\left(|0\rangle\otimes|\alpha\rangle + |1\rangle\otimes Q|\alpha\rangle\right)$.
3. Apply a Hadamard gate on the first qubit: $\sqrt{2}|0\rangle\otimes(|\alpha\rangle + Q|\alpha\rangle) + \sqrt{2}|1\rangle\otimes(|\alpha\rangle - Q|\alpha\rangle)$.
4. Output 1 if the result is $|0\rangle$ and Output -1 if the result is -1.

Exercise: The expectation of the output is $Re\langle\alpha|Q|\alpha\rangle$.

Exercise: What is the expectation of the output if we start with the state $\sqrt{2}\left(|0\rangle - i|1\rangle\right)\otimes|\alpha\rangle$?
Let $|\alpha\rangle$ be a quantum state that can be efficiently prepared.

Let Q be a unitary gate that can be applied efficiently.

Quantum circuit whose output is a random variable $\{-1, 1\}$ and whose expectation is $\text{Re}\langle\alpha|Q|\alpha\rangle$.

1. Start with the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |\alpha\rangle$
• Let $|\alpha\rangle$ be a quantum state that can be efficiently prepared.
• Let Q be a unitary gate that can be applied efficiently.
• Quantum circuit whose output is a random variable $\{-1, 1\}$ and whose expectation is $\text{Re}\langle\alpha|Q|\alpha\rangle$.
 1. Start with the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |\alpha\rangle$
 2. Apply Q conditioned on the first qubit: $\frac{1}{\sqrt{2}}(|0\rangle \otimes |\alpha\rangle + |1\rangle \otimes Q|\alpha\rangle)$
Let $|\alpha\rangle$ be a quantum state that can be efficiently prepared.

Let Q be a unitary gate that can be applied efficiently.

Quantum circuit whose output is a random variable $\{-1, 1\}$ and whose expectation is $\text{Re}\langle\alpha|Q|\alpha\rangle$.

1. Start with the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |\alpha\rangle$
2. Apply Q conditioned on the first qubit: $\frac{1}{\sqrt{2}}(|0\rangle \otimes |\alpha\rangle + |1\rangle \otimes Q|\alpha\rangle)$
3. Apply a Hadamard gate on the first qubit:

$$\frac{1}{\sqrt{2}}|0\rangle \otimes (|\alpha\rangle + Q|\alpha\rangle) + \frac{1}{\sqrt{2}}|1\rangle(|\alpha\rangle - Q|\alpha\rangle)$$
Let $|\alpha\rangle$ be a quantum state that can be efficiently prepared.

Let Q be a unitary gate that can be applied efficiently.

Quantum circuit whose output is a random variable $\{-1, 1\}$ and whose expectation is $\text{Re}\langle\alpha|Q|\alpha\rangle$.

1. Start with the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |\alpha\rangle$
2. Apply Q conditioned on the first qubit: $\frac{1}{\sqrt{2}}(|0\rangle \otimes |\alpha\rangle + |1\rangle \otimes Q|\alpha\rangle)$
3. Apply a Hadamard gate on the first qubit:

$$\frac{1}{\sqrt{2}}|0\rangle \otimes (|\alpha\rangle + Q|\alpha\rangle) + \frac{1}{\sqrt{2}}|1\rangle (|\alpha\rangle - Q|\alpha\rangle)$$

4. Output 1 if the result is $|0\rangle$ and Output -1 if the result is -1.

Exercise: The expectation of the output is $\text{Re}\langle\alpha|Q|\alpha\rangle$.

Exercise: What is the expectation of the output if we start with the state $\frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle) \otimes |\alpha\rangle$?
• Let $|\alpha\rangle$ be a quantum state that can be efficiently prepared.
• Let Q be a unitary gate that can be applied efficiently.

Quantum circuit whose output is a random variable $\{-1, 1\}$ and whose expectation is $Re\langle\alpha|Q|\alpha\rangle$.

1. Start with the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |\alpha\rangle$
2. Apply Q conditioned on the first qubit: $\frac{1}{\sqrt{2}}(|0\rangle \otimes |\alpha\rangle + |1\rangle \otimes Q|\alpha\rangle)$
3. Apply a Hadamard gate on the first qubit:

$$\frac{1}{\sqrt{2}}|0\rangle \otimes (|\alpha\rangle + Q|\alpha\rangle) + \frac{1}{\sqrt{2}}|1\rangle(|\alpha\rangle - Q|\alpha\rangle)$$

4. Output 1 if the result is $|0\rangle$ and Output -1 if the result is -1.
5. Exercise: The expectation of the output is $Re\langle\alpha|Q|\alpha\rangle$
Let $|\alpha\rangle$ be a quantum state that can be efficiently prepared.

Let Q be a unitary gate that can be applied efficiently.

Quantum circuit whose output is a random variable \{-1, 1\} and whose expectation is $\text{Re}\langle \alpha | Q | \alpha \rangle$.

1. Start with the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |\alpha\rangle$
2. Apply Q conditioned on the first qubit: $\frac{1}{\sqrt{2}}(|0\rangle \otimes |\alpha\rangle + |1\rangle \otimes Q|\alpha\rangle)$
3. Apply a Hadamard gate on the first qubit:

$$\frac{1}{\sqrt{2}}|0\rangle \otimes (|\alpha\rangle + Q|\alpha\rangle) + \frac{1}{\sqrt{2}}|1\rangle(|\alpha\rangle - Q|\alpha\rangle)$$

4. Output 1 if the result is $|0\rangle$ and Output -1 if the result is -1.
5. Exercise: The expectation of the output is $\text{Re}\langle \alpha | Q | \alpha \rangle$
6. Exercise: What is the expectation of the output if we start with the state $\frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle) \otimes |\alpha\rangle$?
Repeat for $j = 1...\text{poly}(n, m, k)$:
Repeat for $j = 1 \ldots poly(n, m, k)$:

1. Generate the state $|\alpha\rangle = |1, 0, 1, 0, \ldots, 1, 0\rangle$
Repeat for $j = 1...\text{poly}(n, m, k)$:

1. Generate the state $|\alpha\rangle = |1, 0, 1, 0, ..., 1, 0\rangle$
2. Output a random variable x_j whose expectation value is $\text{Re}\langle \alpha | Q(B) | \alpha \rangle$
Repeat for $j = 1...poly(n, m, k)$:

1. Generate the state $|\alpha\rangle = |1, 0, 1, 0, ..., 1, 0\rangle$
2. Output a random variable x_j whose expectation value is $Re\langle \alpha | Q(B) | \alpha \rangle$

Do the same for the random variables y_j whose expectation value is $Im\langle \alpha | Q(B) | \alpha \rangle$ using an appropriated version of the Hadamard test.