LEARNING-BASED TESTING FOR REACTIVE SYSTEMS

Karl Meinke
CSC School
KTH Stockholm
Overview of Talk

1. What is learning-based testing?
2. The LBTest tool
3. Automotive Case Studies
4. Convergence Metrics
5. Recent Research
6. Conclusions

Unifying theme of 3, 4 and 5 is measuring model convergence since we rarely learn to completion.
1. What is Learning-based testing?

Example: black-box TCG for Newton’s algorithm

- **Precondition** \(x \geq 0.0 \)
- **Postcondition** \(|y^2 - x| \leq \varepsilon \)

Constraint solver → TCG → SUT → Oracle

- **Input** \(x=4.0 \)
- **Output** \(y=2.0 \)

Verdict

- \(x=4.0, y=2.0 \) satisfies \(|y^2 - x| \leq \varepsilon \)
1.2. Key Problem: **No Feedback!**

Problem: How to modify this architecture to..

1. **Improve** next test case using previous test outcomes
2. **Execute** a **large number of good quality** tests?
3. **Obtain** good coverage?
4. **Find** bugs **quickly**?
2. Learning-Based Testing (LBT)
Meinke 2004, Proc. ISSTA-04

“aka. Model based testing without a model”
Abstract LBT Algorithm

1. \(M_0 := \text{getInitialHypothesis}(); \)

2. For each \(k \geq 0 \) do
 1. Model check \(M_k \) against \(\text{Req} \)
 2. Choose “best counterexample” \(i_{k+1} \) from step 2.1
 3. Execute \(i_{k+1} \) on SUT to produce \(o_{k+1} \)
 4. if \((i_{k+1}, o_{k+1}) \) satisfies \(\neg \text{Req} \) label \(i_{k+1} \) as an error
 5. If equivalent \((SUT, M_{k+1}, \text{Bound}) \) break.
 6. \(M_{k+1} := \text{getNextHypothesis}(i_{k+1}, o_{k+1}) \)
2. LBTest Tool

- LBTest implements *black-box requirements testing* for *embedded systems* with *off-the-shelf* and *customised components*.

- LBTest automates 3 processes:
 - **Test Case Generation** (ATCG), 3 Sources:
 - Active learning queries
 - Model checker generated counterexamples
 - Stochastic equivalence checker queries
 - **Test execution** (online testing)
 - **Verdict construction** *(pass/fail/warning/exception)*

- Some configurations quickly achieve *high model convergence*.
LBTest Architecture

Communication wrapper

System under Test
- e.g. jar file

Automaton Learning Algorithm

NuSMV Model Checker
- TCG and Oracle

LTL Requirement Formula Req

Verdict v_n

observed output o_n

test case i_n

$n = 1, 2, \ldots$

Stochastic equivalence checker

counterexample i_n
Technical & Process Advantages

• Well suited to agile development
• Model is always synchronised to actual code
• No false positives or false negatives due to wrong/outdated models (C.f. model-based testing)
• Avoid manual model construction and maintenance
Modular Structure

- **Learners**
 - L*Mealy
 - Kearn’s algorithm
 - CGE, ICGE (term rewriting system representation)
 - MinSplit (NDFA representation)
 - Hybrid automaton learner HyCGE (infinite state systems)

- **Model checkers**
 - NuSMV 2.5
 - BDD checker
 - BMC/SAT solver
 - nuXmv 1.0

- **Stochastic equivalence checker**
 - First / longest / shortest difference (strategies)
Requirements Modeling

- Modeling reactive systems needs a **time concept**
- LBTest uses *propositional linear temporal logic* (PLTL)
- PLTL = “Boolean logic + time”
- Conventional **model-based testing (conformance testing)** is the *next-only part* of PLTL.

- Could interface LTL to *visual requirements modeling languages* and *pattern languages*.
Approximate Models

- Real-world SUTs are \textit{infinite state systems}.
- LBTest constructs finite state approximations through \textit{finite partition sets}.

- Input partitioning is implemented in LBTest (test selection).
- Output partitioning is implemented in SUT wrapper (equivalence class).
- Gives a limited \textit{first-order extension} to PLTL.
Verdict Construction (Oracle step)

- On-the-fly verdict construction filters false negatives

- Compares two behaviours:
 (1) a predicted behaviour from model (bad)
 (2) an observed behaviour in SUT

- Prediction == Observation => Fail/Warning
- Prediction != Observation => Pass
- No Observation => Exception/Timeout error
3. Automotive Case Studies (Volvo, Scania)

- **Engine Start**: 31 states, 220 transitions, 5 min.

- **Dual-circuit Steering**: 60 states, 800 transitions, 7.5 hours

- **Fuel level display**: 26 states, 104 transitions, 2.5 hours

- **Brake-by-wire**: 85,000 states, 1.7 million transitions, 10 hours
Case Study: Brake-by-Wire ECU
Fourteen Black-box Requirements

REQ-4 If the brake pedal is pressed and the actual speed of the vehicle is larger than 10 km/h and the slippage sensor shows that the (front right) wheel is slipping, this implies that the corresponding brake torque at the (front right) wheel should very quickly be 0.

\[G(\text{BrakePedal} = b \land \text{Motion} = \text{moving} \land \text{SlipRR} = \text{slipping} \rightarrow X(\text{ABSBrakeTorqueRR} = \text{zero})) \]
Model #3 after 400 msec
4. Convergence metrics

• LBT needs a stopping criterion

• We can try to use model convergence values

• Based on discrepancy
 • Difference between two successive models M_i, M_{i+1}
 • Difference between a model M_i and the SUT

• Different metrics are possible:
 • Percentage of divergent sequences
 • Mean time to divergence

• Can estimate these by Monte Carlo methods
 • stochastic equivalence checking
Divergent Path Metric

- A fixed (user-defined) number K of random input sequences is executed both on the learned model and on the SUT. ($K = \text{sample size}$)

- Input length is twice active learning length.

- The number δ of such random input sequences that show any divergent behavior between the model and the SUT is counted, where $0 \leq \delta \leq K$.

- The final divergent path metric DPM is then the normalised percentage $\text{DPM} = 100 \times (K - \delta)/K$ (%).
Fig. 3. BBW: model convergence over time.

Fig. 4. BBW: model size over time.
5. Regular Inference by Over-Approximation

an equivalence relation \(\equiv \subseteq Q \times Q\) on the state set of a Moore automaton

\[
A = \langle Q, \Sigma, \Omega, \delta : Q \times \Sigma \rightarrow Q, \lambda : Q \rightarrow \Omega, q_0 \rangle
\]

is a congruence if, and only if, \(\equiv\) satisfies the substitutivity conditions

\[
q \equiv q' \rightarrow \delta(q, \sigma) \equiv \delta(q', \sigma), \tag{1}
\]

\[
q \equiv q' \rightarrow \lambda(q) = \lambda(q'), \tag{2}
\]

To achieve determinism, non-equivalences between states are propagated through the set of all observed input strings, by inverting rule (1) to its contrapositive form

\[
\delta(\overline{\sigma_1}, \sigma) \neq \delta(\overline{\sigma_2}, \sigma) \rightarrow \overline{\sigma_1} \neq \overline{\sigma_2} \tag{3}
\]

for input strings \(\overline{\sigma_1}, \overline{\sigma_2} \in \Sigma^*\).
Quantifying the Complexity of Testing and Learning
6. Conclusions

- Advantages of LBT
 - Flexible (black-box)
 - High-volume, high coverage (active learning)
 - More effective than random testing
 - Objective measurable coverage (stochastic equivalence checking)
 - Connects to PAC learning
 - Accurate test verdicts (model checking)
 - Supports an ALARP principle for safety standards?
Future Research

• Latency problems – concurrent testing and learning.
• Fault injection on virtualised hardware models.
• Hardware-in-the-loop (HIL) testing.
• Hybrid and infinite state systems.
• Testing systems-of-systems (SafeCOP)
Literature
