
Automated Inference of Excitable Cell Models as
Hybrid Automata

RASMUS ANSIN, RANSIN@KTH.SE
DIDRIK LUNDBERG, DIDRIKL@KTH.SE

Bachelor’s Thesis, SA104X
Royal Institute of Technology

School of Computer Science and Communication
Supervisor: Karl Meinke

Examiner: Mårten Olsson

iii

Abstract

In this paper, we explore from an experimental point of view the possibili-
ties and limitations of the new HYCGE learning algorithm for hybrid automata.
As an example of a practical application, we study the algorithm’s performance
on learning the behaviour of the action potential in excitable cells, specifically
the Hodgkin-Huxley model of a squid giant axon, the Luo-Rudy model of a
guinea pig ventricular cell, and the Entcheva model of a neonatal rat ventricu-
lar cell. The validity and accuracy of the algorithm is also visualized through
graphical means.

iv

Sammanfattning

I denna uppsats undersöker vi från en experimentell synvinkel möjligheter
och begränsningar i den nya inlärningsalgoritmen HYCGE för hybridautoma-
ter. Som ett exempel på en praktisk tillämpning, studerar vi algoritmens förmå-
ga att lära sig aktionspotentialens beteende i retbara celler, specifikt Hodgkin-
Huxleymodellen av en bläckfisks jätteaxon, Luo-Rudymodellen av en ventriku-
lär cell i marsvin, och Entchevas modell av en ventrikulär cell i nyfödd råtta.
Giltigheten och noggrannheten hos algoritmen visualiseras även genom grafiska
medel.

Contents

Contents v

1 Introduction 1
1.1 Excitable Cells . 2
1.2 Hybrid Automata . 3
1.3 The Learning Algorithm . 3

2 Descriptions of Specific Hybrid Automata 7
2.1 The Hodgkin-Huxley Squid Giant Axon Model 7
2.2 The Luo-Rudy Guinea Pig Ventricular Cell Model 8
2.3 The Entcheva Neonatal Rat Ventricular Cell Model 9

3 Experimental Results 11
3.1 Completeness and Accuracy - Benchmarking the Qualitative Perfor-

mance of the Algorithm . 11
3.2 Models of Excitable Behaviour . 11

3.2.1 The Hodgkin-Huxley Squid Giant Axon Model 11
3.2.2 The Luo-Rudy Guinea Pig Ventricular Cell Model 12
3.2.3 The Entcheva Neonatal Rat Ventricular Cell Model 12

3.3 General Performance of the Algorithm 12

4 Conclusions 17

A Supplementary Tables and Figures 19
A.1 Performance Reference Sheet . 19
A.2 Parameter Reference Sheet . 20
A.3 Figures of Simple Experimental Models 21

Bibliography 23

v

Chapter 1

Introduction

Systems theory is the science of self-regulating systems. Although the definitions of
the terms had not yet been made, applied systems theory or cybernetics could be
seen in mechanical and electrical engineering already during the early 20th century.
While the Baltic German Jakob von Uexküll provided an early perspective on
systems theory from a biologist’s point of view in his Theoretische Biologie from
1920, it was not until the American mathematician Norbert Wiener wrote the
seminal Cybernetics or Control and Communication in the Animal and the Machine
in 1948 that systems theory was moved from a philosophical level of discussion and
formalized in a mathematical language.

During the late 20th century, the increasing prevalence of computers has made
computational learning of systems an interesting and viable field of study. Here,
it is crucial which representation of the system you choose. For computational
reasons, a hybrid automaton representation is useful, since this representation will
not have a problem with transitions between different system behaviours - fitting a
set of differential equations to a system with typical discontinuous behaviour can be
very resource-consuming. In addition, hybrid automata would also more suited for
model checking, due to their shared characteristics with finite state automata. As
a byproduct, the discretization of fundamentally different system behaviours also
creates a natural qualitative understanding of the system.

In this paper, we will discuss automated inference of cyber-physical systems by
a new algorithm. More specifically, we will study models of excitable cell behaviour.
This could lead to very interesting applications in the future. Primarily, automated
learning of cell behaviour would likely drastically reduce the time it takes to con-
struct these models through manual measurements. Worthy of note here is that
for example muscular cells throughout the heart do not all behave the same, but
come in many different varieties, and creating new, specific, models for these is very
much an active field today [4]. It has also been shown [5] that learning cell models
as hybrid automata would make the simulation of large arrays of cells much less
computationally resource-demanding.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1. A graph of the voltage in an action potential over time

1.1 Excitable Cells

Excitable cells can be found in the vast majority of multicellular organisms and take
their name from being able to amplify and propagate changes in transmembrane
potential to adjacent cells. The event where an excitable cell does this is known
as an action potential or AP, and it can be triggered in several ways over different
types of transcellular connections known as synapses. In a chemical synapse, neuro-
transmitters are sent from the end of a neuron to another cell over the synaptic cleft
of intercellular space, opening the ion channels of the postsynaptic cell. In electri-
cal synapses, adjacent cells are connected directly via hemichannels between their
respective cytoplasms, allowing ions to freely pass between the two respective cells.
Various types of voltage-gated ion channels then open and close in distinct phases
depending on the transmembrane potential, shaping the AP. The entire process is
illustrated in Figure 1.1. Depending on the cell in question, the resting voltage
lies between minus 80 to minus 60 millivolts, rises about 100-150 millivolts above
that. The whole AP, including full repolarization, takes place over a few hundred
milliseconds.

Examples of excitable cells in humans include neurons, endocrine cells and mus-
cle cells of all types. Their action potentials can differ a lot from each other, due
to type of synapse, resting potential and types of ion channels, only to name a few
factors. In effect, excitable cells control all movement, thinking, and secretion of
hormones into the bloodstream. To understand how they work together and map
them throughout the body is therefore of vital importance to the medical science.

1.2. HYBRID AUTOMATA 3

q0 : Cooling Mode
ẋ = −0, 1x
{x > 18}

q1 : Heating Mode
ẋ = 5− 0, 1x
{x < 22}

[x < 18]

[x > 22]

Figure 1.2. A hybrid automaton representation of a simple thermostat

1.2 Hybrid Automata
A hybrid automaton is a representation of a system which combines the logic of
states and transitions of a state machine with the continuous modification of vari-
ables of ordinary differential equations. During the latter part of the 20th century,
hybrid automaton representations have been used to understand and construct em-
bedded systems. It is a powerful tool for modeling systems with both digital and
analog parts. Hearkening back to the original cyberneticists who had backgrounds
in biology, an interesting current application apart from embedded systems is sys-
tems biology - the study of the emergent systemic properties of molecular biology.

In Figure 1.2 we show an example of a hybrid automaton. The different states of
the hybrid automaton are visualized as boxes. The arrows from one box to another
signify transitions between the different states, which take place when the transition
conditions inside the brackets are met, in which case the system changes state.
When the hybrid automaton is in a certain state, the variables are manipulated
in various ways (here, they change over time in a manner governed by differential
equations). The transition conditions are inequalities, but they might be any logical
statement.

Please note that in literature you might encounter hybrid automata with transi-
tions going from a state to itself. We have here simplified the notation, and written
equations governing the behaviour of the hybrid automaton while not transitioning
to another state inside the state itself.

In our experiments, when a hybrid automaton is “running”, you in one running
cycle first increment time by an arbitrary amount, alter the variables as described
by the current state, values of the variables and increased time, then check if any
transition conditions are met, and finally change state accordingly. The role of time
as described above is of course intrinsic to our specific models, and not generally to
hybrid automata taken as a whole.

1.3 The Learning Algorithm
The learning algorithm we use, HYCGE, was originally formulated by Karl Meinke
and implemented in Python by Fei Niu during 2012 [3]. Consequentially, the hy-
brid automata we discuss will be a deterministic hybrid Mealy automata, also im-
plemented in Python and tested with the original code. For a complete formal

4 CHAPTER 1. INTRODUCTION

definition of HYCGE, we refer to their unpublished paper. The following is meant
to be a rudimentary overview which enables a reader unfamiliar with HYCGE to
understand our results and conclusions.

In order to test the learning algorithm, we give a certain input sequence, k real
input values and n values of registers, to a system we have full knowledge of, the
so-called system under learning or SUL which the algorithm will treat as a black
box. When we get an output sequence of n new register values, we will hand both
sequences over to the learning algorithm in order that it might learn the behaviour
of the SUL.

The learning algorithm will then have to learn three qualities of this system:

Discrete behaviour The logical transition conditions between the different states.
These can be viewed as subsets of Rn·(l+1), where n is the number of registers
and l is the number of different symbolic inputs. Note that we assume that
only one symbolic input can be true at a time.

Continuous behaviour The functions f : Rn+k → Rn, one for each edge (note
that this includes the edges from a state to itself) of the finite directed graph
described below.

Structure A finite directed graph, where the vertices represents the states and the
edges the transitions of the hypothetical hybrid automaton representation of
the SUL.

It is clear that you will have to learn these two first in parallel. To approximate
f , k + n-variate polynomials of degree d are used. In our experiments, d = 2. In
order to approximate the transition conditions, (n · l)-spheres are used. Polynomi-
als and spheres are in the language of a mathematician suitably “well-behaved” for
computational purposes. Inside a sphere S, we hypothesize that the polynomial tied
to S approximates the behaviour of the SUL in our black box within an approxi-
mation error ε. Different states are thus primarily distingushed by having different
d-degree polynomial approximations. Note that this means that parts of the SUL
which can not easily be approximated by d-degree polynomials will be fractured
into many different spheres.

Key to the algorithm, and to learning the structure of the SUL, is the insertion
of these spheres and polynomials as labels of nodes in a higher-order prefix tree,
which in contrast to the ordinary prefix trees we are used to has polynomials and
spheres as labels. The final objective of obtaining an actual hybrid automaton from
this higher-order prefix tree is then accomplished through a process called folding.
This enables us to learn loops - two nodes in the tree are considered equivalent if
they yield epsilon-equal output sequences for the same input sequence. In similar,
but much more complicated, fashion subtrees are considered equivalent and folded
by the same criterion. This is accomplished by checking for consistency - if two
spheres cover an overlapping space, we compare their polynomials. Because of

1.3. THE LEARNING ALGORITHM 5

Figure 1.3. A graphical representation of a simple higher-order prefix tree before
folding

the assumption that the automaton is deterministic, we know that two different
polynomials can not govern the system behaviour of the same space.

If that is the case, the nodes are merged and we add a loop rule to the tree.
For example, if we were to fold the two branches of the higher-order prefix tree

in Figure 1.3, we would start checking the spheres for intersection. If spheres have
non-empty intersection, they might belong to the same state, so we would check if
the polynomials agree with each other. If they are epsilon-equal in the intersection,
we have likely detected that they belong to the same state. However, if those spheres
are for example S2 and S4 in Figure 1.3, we must then check if the aforementioned
polynomial is consistent with the reachable parts of S3 and S5, which means, the
parts of S3 and S5 which can be reached with the polynomial describing S2 and S4.
To achieve this, the algorithm uses a heuristic method which we will not describe
in further detail here.

If we suppose all subtrees have been checked for, we finally simply fold the ends
- in this case if no subtrees were consistent with each other v3 onto v2 and v4 onto
v5. Then, the tree functionally describes a hybrid automaton.

We also utilize the active query generation strategies for HYGCE, as proposed
by Karl Meinke and Fei Niu.

Chapter 2

Descriptions of Specific Hybrid
Automata

Apart from some general hybrid automata we have used in our research which have
no foundation in the physical world, we have studied the performance of the al-
gorithm on several established models of excitable cell behaviour. Note that first
two models were originally formulated as a system of nonlinear differential equa-
tions only - the hybrid automaton representations and the numerical values for
the paramenters were made in a 2005 paper [5] by Pei Ye, Emilia Entcheva,
Radu Grosu and Scott Smolka. A table with these parameter values is re-
produced in Appendix A.2, to facilitate eventual experiments of the reader. It is
also worth noting that we started with randomized initial values adding together
through v = vNa − vK + vCa to a transmembrane voltage v around zero but lower
than VR, zero volt being defined as the resting voltage in the models. Please note
that this definition is just a convention - the real resting voltages are described in
Section 1.1. This was as good an educated guess as we could do regarding the initial
states.

2.1 The Hodgkin-Huxley Squid Giant Axon Model

The Hodkin-Huxley model illustrated in Figure 2.1, or the “HH” model for short,
originated in 1952 when the British biophysicists and Nobel laureates Sir Alan
Lloyd Hodgkin and Andrew Huxley created a mathematical model of action
potential [1]. This new insight into neuron excitation led them to hypothesize ion
channels, proteins which regulate the flow of ions across the cell membrane. These
were eventually confirmed decades later. The Hodkin-Huxley model and the logical
conclusions which followed from it is regarded as one of the landmark achievements
of 20th century biophysics.

The original differential equations in the Hodgkin-Huxley model included ap-
proximations of the two voltage-gated ion channels of sodium and potassium in ad-
dition to a “leak” term which is time-independent and linear. Here, the behaviour

7

8 CHAPTER 2. DESCRIPTIONS OF SPECIFIC HYBRID AUTOMATA

q0 : Resting & FR
v̇Na = α0

NavNa, v̇K = α0
KvK

v = vNa − vK
{v < VR}

q1 : Stimulated
v̇Na = ist, v̇K = α1

KvK
v = vNa − vK
{v < VT }

q2 : Upstroke
v̇Na = α2

NavNa, v̇K = α2
KvK

v = vNa − vK
{v < VO ∧ v > VT }

q3 : Plateau & ER
v̇Na = α3

NavNa, v̇K = α3
KvK

v = vNa − vK
{v < VO ∧ v > VR}

[Vs]

[v < VT ∧ V̄s]

[v ≥ VT]

[v ≥ VO]

[v ≤ VR]

Figure 2.1. A hybrid automaton representation of the Hodgkin- Huxley squid giant
axon model

of these three channels have been summarized in the voltages vNa and vK. Vs is the
actual stimulation event, representing saltatory conduction at the nodes of Ranvier
or colloquially, the passing on of the nerve signal inside the axon. ist is the voltage
stimulus connected to Vs. α0

Na, α0
K and so on are simply constants describing the

strength of the ion currents. VT is the threshold voltage value for which the cell
will proceed with generating an action potential, in which case we go from state
q1 to q2. If the stimulation event Vs is too short for the voltage to rise above VT

however, the automaton will simply return to q1. In q2, the Na+ ion channels will
quickly change the membrane potential until it exceeds the overshoot voltage VO at
which point the cell will initiate early repolarization or “ER”, returning to ordinary
membrane potential. When the repolarization voltage VR is reached, the cell goes
back to a restive state and final repolarization or “FR”, awaiting the next outside
stimulation.

2.2 The Luo-Rudy Guinea Pig Ventricular Cell Model
Another of the models we have studied is the Luo-Rudy model, or the “LRd” model
of cardiac myocytes named after Yoram Rudy and Ching-Hsing Luo who defined
it in 1994 [2]. A hybrid automaton representation can be seen in Figure 2.2.

In contrast to the HH model, when modeling a cardiac myocyte it is also impor-
tant to account for the calcium voltage-gated ion channel, vCa in the representation.
Cardiac cells and muscle cells also have a frequency adaption axons lack - a shorter
resting phase results in a shorter excited state. From this arises the need for some
kind of “memory” in the model, here in the form of vn. We also define θ = vn/VR,
meaning that θ is equal to the percentage of the resting threshold voltage when a
new excitation event occurs, in other words a measure of the length of the resting
phase. In q3 we also have the function f(θ) = 1 + 13 6√θ, adjusting the length of q3
with respect to θ, accomplishing the goal of frequency adaption.

2.3. THE ENTCHEVA NEONATAL RAT VENTRICULAR CELL MODEL 9

q0 : Resting & FR
v̇Na = α0

NavNa, v̇K = α0
KvK

v̇Ca = α0
CavCa

v = vNa − vK + vCa
{v < VR}

q1 : Stimulated
v̇Na = ist, v̇K = α1

KvK
v̇Ca = α1

CavCa
v = vNa − vK + vCa
{v < VT }

q2 : Upstroke
v̇Na = α2

NavNa, v̇K = α2
KvK

v̇Ca = α2
CavCa

v = vNa − vK + vCa
{v < VO ∧ v > VT }

q3 : Plateau & ER
v̇Na = α3

NavNaf(θ), v̇K = α3
KvK

v̇Ca = α3
CavCa, v = vNa−vK+vCa

{v < VO ∧ v > VR}

[Vs], vn = v

[v < VT ∧ V̄s]

[v ≥ VT]

[v ≥ VO]

[v ≤ VR]

Figure 2.2. A hybrid automaton representation of the Luo-Rudy guinea pig ven-
tricular cell model

2.3 The Entcheva Neonatal Rat Ventricular Cell Model
The Entcheva Neonatal Rat Ventricular Cell model, or the “NNR” model for short is
the most recent one we will discuss here, originally formulated by Emilia Entcheva
in 2005. It is shown in Figure 2.3. The NNR model is unique in the way that
it was first developed as a hybrid state automaton. It is based in part on the
LRd model but has the shorter plateau phase characteristic of rats in contrast
to most other mammalian species, such as guinea pigs which the LRd model is
constructed for and humans for which much of medical science is in the end applied
on. Nonetheless, rats have an importance in cardiac electrophysiology since they are
often used in other experiments. Here, we define f(θ) = 1 + 2θ. Also, the voltages
in the transition conditions are dependent on θ through g(VT) = VT · (1 + 1, 45 6√θ)
and h(VO) = VO − 40 ·

√
θ.

10 CHAPTER 2. DESCRIPTIONS OF SPECIFIC HYBRID AUTOMATA

q0 : Resting & FR
v̇Na = α0

NavNaf(θ), v̇K = α0
KvK

v̇Ca = α0
CavCa

v = vNa − vK + vCa
{v < VR}

q1 : Stimulated
v̇Na = ist, v̇K = α1

KvK
v̇Ca = α1

CavCa
v = vNa − vK + vCa
{v < g(VT)}

q2 : Upstroke
v̇Na = α2

NavNa, v̇K = α2
KvK

v̇Ca = α2
CavCa

v = vNa − vK + vCa
{v < h(VO) ∧ v > g(VT)}

q3 : Plateau & ER
v̇Na = α3

NavNaf(θ), v̇K = α3
KvK

v̇Ca = α3
CavCa, v = vNa−vK+vCa

{v < h(VO) ∧ v > VR}

[Vs], vn = v

[v < g(VT) ∧ V̄s]

[v ≥ g(VT)]

[v ≥ h(VO)]

[v ≤ VR]

Figure 2.3. A hybrid automaton representation of the Entcheva neonatal rat ven-
tricular cell model

Chapter 3

Experimental Results

Our experimental results consist of graphs over completeness and relative accu-
racy, which are explained below. For the SUL representation of these systems, we
have used the forward Euler method to compute the solutions to the ODEs unless
otherwise specified.

3.1 Completeness and Accuracy - Benchmarking the
Qualitative Performance of the Algorithm

When evaluating the progress of the algorithm, we are interested in two fundamental
characteristics. The first of these is how much of the system the learning algorithm
has charted. We call this completeness. A natural way to measure this would be to
see how often a random starting input sequence ends somewhere uncharted by the
learning algorithm.

The second characteristic is accuracy. We take this to mean how close the
predictions of our hypothesis automaton come to the actual SUL. In practice, we
measure the relative accuracy, which means the number of already deemed complete
input sequences who end within a distance ε of the same input sequence fed to the
SUL.

3.2 Models of Excitable Behaviour

3.2.1 The Hodgkin-Huxley Squid Giant Axon Model

Studying Figure 3.1 he completeness ratio reaches 55% by 14000 iterations, compa-
rable to the programmable thermostat and the calculator in the very first experi-
ments by Fei Niu. It is relatively stable after 3000 iterations.

We also tried using the midpoint method to compute the solutions of the ODE,
which resulted in slower learning per iteration.

11

12 CHAPTER 3. EXPERIMENTAL RESULTS

Figure 3.1. HYCGE performance on the Hodgkin-Huxley Squid Giant Axon model

3.2.2 The Luo-Rudy Guinea Pig Ventricular Cell Model

Studying Figure 3.2, we see that at about 27000 iterations, a completeness of 45%
is achieved. The learning curve displays significant irregularities in the forms of
sudden drops and rises. The calculator in the initial experiments had a similarly
slow learning curve.

3.2.3 The Entcheva Neonatal Rat Ventricular Cell Model

Interestingly, Figure 3.3 does not show signs of a significantly slower learning curve
- 48% is achieved after 30000 iterations. On the other hand, the relative accuracy
show incredibly jumpy signs. That is likely to be caused by the complexity of the
model.

3.3 General Performance of the Algorithm
In addition to testing the algorithm on the three aforementioned real models, we
“dissected” these and made simpler automata which each captured one character-
istic of them, in order to estimate which system behaviours were hard to learn.
Figure 3.4, Figure 3.5 and Figure 3.6 depict learning performance on systems with
a linear structure and an increasing number of states - 2, 3 and 4, respectively. The
first three graphs reach 95% completeness in 60, 400 and 960 iterations, respectively.
This would imply that even in the ideal case, an increasing number of states make
the learning time increase worse than linearly. In Appendix A.3, we provide the
most interesting of these automata.

3.3. GENERAL PERFORMANCE OF THE ALGORITHM 13

Figure 3.2. HYCGE performance on the Luo-Rudy Guinea Pig Ventricular Cell
model

Figure 3.3. HYCGE performance on the Entcheva Neonatal Rat Ventricular Cell
model

14 CHAPTER 3. EXPERIMENTAL RESULTS

Figure 3.4. HYCGE performance on the simple model of type 1.1

Figure 3.5. HYCGE performance on the simple model of type 1.2

3.3. GENERAL PERFORMANCE OF THE ALGORITHM 15

Figure 3.6. HYCGE performance on the simple model of type 1.3

Figure 3.7. HYCGE performance on the simple model of type 2.1

16 CHAPTER 3. EXPERIMENTAL RESULTS

The first three graphs reach 95% completeness in 60, 400 and 960 iterations,
respectively. This would imply that even in the ideal case, an increasing number of
states make the learning time increase worse than linearly.

On the other hand, as the Figure 3.7 which depicts a simple looping HA, mod-
eling loops is clearly not an issue at all for the algorithm.

We also made two more experimental HAs, one similar to the simple model of
type 1.1 albeit with more more complex differential equations in the two different
states, and one which is similar to the 2.1 simple model except for that the tran-
sitions are solely dependent on Vs, akin to the first transition in our biophysical
applications. The first of the was virtually similar to 1.1, but the second proved to
be a very interesting anomalous type - the algorithm was not able to start learning
it at all. Taken together, these insights might shed some light on which aspects of
the algorithm and the Python implementation of it might need further attention
and refinement and which do not.

Throughout our experiments, we have found out that how you randomize your
initial values for the SUL is crucial in order for the algorithm to learn correctly.
Since we do our experiments with a virtual model, we can choose these ourselves.
Applying the learning algorithm on real, physical, systems would require you to
start with all possible (or rather, non-equal within some distance ε) initial values
in order to possibly be sure of learning the full system. Depending on what you
know about the SUL, this might pose an arduous task, and if you can not adjust
the initial values, impossible.

Chapter 4

Conclusions

Seeing how well our results fared compared to the original results, we believe it is
fair to think that the completeness ratio would continue to grow for our automata
in a similar way as it did in the original experiments. This would imply between
80% and 90% completeness in double that running time, and we are reaching the
levels where we are getting usable results.

When you design representations of systems it can be hard to know whether or
not your representation is the simplest one possible. It is easy to think that all future
applications of learning algorithms like HYCGE lie with learning physical systems.
One important application might be to analyze already known models of systems
to see if there exists a simpler representation, since HYCGE will always learn the
simplest possible model representation of a system in theory, and in practice the
simplest one where the ODEs are well approximated by d-degree polynomials. This
can however also lead to a backlash - if you try to learn a system which has too
complex equations to be approximated well by d-degree polynomials, the result
hybrid automaton will have confusingly different states.

In conclusion, we think that the 21st century interdisciplinary venture of fully
charting and simulating the human body could be accelerated by automated learn-
ing, and that the HYCGE algorithm is a potent tool for that mission.

17

Appendix A

Supplementary Tables and Figures

A.1 Performance Reference Sheet

SUL Relative accuracy Completeness Training data size ε

The HH model 0,96 0,55 14000 0,01
The LrD model 0,93 0,45 27000 0,01
The NNR model 0,58 0,48 30000 0,01

Table A.1. HYCGE performance reference sheet

19

20 APPENDIX A. SUPPLEMENTARY TABLES AND FIGURES

A.2 Parameter Reference Sheet

HH LRd NNR
VR 10 20 20
VT 10 20 30
VO 83 138 120
ist 30 30 30
α0

Na -0,98 -0,1 -0,025
α0

K -0,16 -0,1 -0,07
α0

Ca N/A -0,1 -0,2
α1

Na N/A N/A N/A
α1

K -0,16 -0,1 -0,07
α1

Ca N/A -0,1 -0,02
α2

Na 1,4 200 250
α2

K 15 0 200
α2

Ca N/A 100 125
α3

Na -0,98 -0,001 -0,025
α3

K -0,16 0,036 -0,07
α3

Ca N/A 0,008 -0,2

Table A.2. Parameter reference sheet

A.3. FIGURES OF SIMPLE EXPERIMENTAL MODELS 21

A.3 Figures of Simple Experimental Models

q0
ẋ = α0
{x < 10}

q1
ẋ = α1
{x > 10}

[x < 10]

Figure A.1. A hybrid automaton representation of a simple model of type 1.1

q0
ẋ = α0
{x < 10}

q1
ẋ = α1
{x > 10}

q2
ẋ = α2
{x > 20}

[x > 10]

[x > 20]

Figure A.2. A hybrid automaton representation of a simple model of type 1.2

q0
ẋ = α0
{x < 10}

q1
ẋ = α1
{x > 10}

q2
ẋ = α2
{x > 20}

q3
ẋ = α3
{x > 30}

[x > 10]

[x > 20]

[x > 30]

Figure A.3. A hybrid automaton representation of a simple model of type 1.3

22 APPENDIX A. SUPPLEMENTARY TABLES AND FIGURES

q0
ẋ = β0
{x < 10}

q1
ẋ = β1
{x > 10}

[x < 10]

[x > 10]

Figure A.4. A hybrid automaton representation of a simple model of type 2.1

q0
ẋ = γ0
{V̄s}

q1
ẋ = γ1
{[Vs]}

[Vs]

[V̄s]

Figure A.5. A hybrid automaton representation of a simple model of type Vs, used
for testing performance of learning systems with different symbolic inputs

q0
v̇ = δ0 {v < 10}

q1
v̇ = f(θ)v
{v > 10}

[v > 10], vn = v

Figure A.6. A hybrid automaton representation of the simple model of type f(θ),
f(θ) defined as in the NNR model

Bibliography

[1] Alan Lloyd Hodgkin and Andrew Huxley. A quantitative description of mem-
brane current and its application to conduction and excitation in nerve. The
Journal of Physiology, 117:500–544, 1952.

[2] Ching-Hsing Luo and Yoram Rudy. A dynamic model of the cardiac ventricu-
lar action potential. i. simulations of ionic currents and concentration changes.
Circulation Research, 74:1071–1096, 1994.

[3] Karl Meinke and Fei Niu. An active learning algorithm for hybrid mealy au-
tomata. Unpublished internal paper, March 2013.

[4] Mathias Wilhelms, Hanne Hettmann, Mary M. Maleckar, Jussi T. Koivumäki,
Olaf Dössel, and Gunnar Seemann. Benchmarking electrophysiological models
of human atrial myocytes. Frontiers in Physiology, 3:487, 2012.

[5] Pei Ye, Emilia Entcheva, Radu Grosu, and Scott A. Smolka. Efficient modeling
of excitable cells using hybrid automata. In In Proceedings of Computational
Methods in System Biology, pages 216–227, 2005.

23

