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A SMALLER SLEEPING BAG FOR A BABY SNAKE

JOHAN H�ASTAD, SVANTE LINUSSON, AND JOHAN W�ASTLUND

Abstract. By a sleeping bag for a baby snake in d dimensions we mean a
subset of Rd which can cover, by rotation and translation, every curve of unit
length. We construct sleeping bags which are smaller than any previously
known in dimensions 3 and higher. In particular, we construct a three dimen-
sional sleeping bag of volume approximately 0.075803. For large d we construct

d-dimensional sleeping bags with volume less than (c
p
log d)d

d3d=2
for some constant

c.
To obtain the last result, we show that every curve of unit length in Rd lies

between two parallel hyperplanes at distance at most c1d�3=2
p
log d, for some

constant c1.

1. Introduction

The \worm problem" of Leo Moser asks for a plane set of minimal area which
can cover (by rotation and translation) every arc of unit length. The problem has
been popularized by several authors, see [S], [NPL] and the references therein. It
has been referred to as \mother worm's blanket", while other mathematicians have
discussed the form of a hammer head to smash the entire worm in a single stroke.

The smallest known \universal blanket" was discovered by R. Norwood, G. Poole,
and M. Laidacker [NPL]. This region, shown in Figure 1, consists of a 60Æ-sector of
a circle of radius 1/2, with a 30Æ-60Æ-90Æ-triangle with sides 1/2,

p
3=3 and

p
3=6

attached on each side. The area is
p
3=12 + �=24, or approximately 0.27524. No

positive lower bound is known for the area of a universal blanket, although in [M]
it is shown that no plane set of measure zero will cover every smooth curve. If we
add the requirement that the blanket should be convex then it is shown in [SW]
that the area must be at least 0:21946.

In [S], I. Stewart asks for a \sleeping bag", that is, a three dimensional region
which will cover every arc of unit length. This challenge was answered by Bernt
Lindstr�om [L], who constructed a valid sleeping bag of approximate volume 0.15953.
In this note we will construct a sleeping bag in three dimensions with less than half
the volume of Lindstr�om's. We also construct higher dimensional sleeping bags
which, as far as we know, are smaller than any previously known, also asymp-
totically. The higher dimensional problem has also been studied by J. Schaer and
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Figure 1. The smallest known universal blanket.

J. E. Wetzel [SW], who proved that the cube with hyperdiagonal 1 is a valid sleeping
bag in every dimension.

We begin by constructing a sleeping bag with the shape of a rectangular box.

Theorem 1. The rectangular 1� 1
2 � 1

3 � � � � � 1
d-box is a valid sleeping bag in d

dimensions.

Proof. Suppose we are given an arc 
 of unit length in d dimensions. We can
assume that 
 : [0; 1] ! R

d is a parameterization by arc length, that is, the
arc 
[a; b] has length ja� bj. Let H be a hyperplane intersecting 
 in the points

(1=2d); 
(3=2d); : : : ; 
((2d� 1)=2d). Since no point on 
 can be at distance more
than 1=2d from H , 
 lies completely between the two hyperplanes parallel to H at
distance 1=2d from H . These two hyperplanes, which we call H1 and H2, are at
distance 1=d from each other. By induction on d, we can assume that the projection
of 
 on H can be covered by a 1� 1

2 � 1
3 � � � � � 1

d�1 -box. The part of the region
between H1 and H2 which is projected into this box by orthogonal projection on
H is a 1� 1

2 � 1
3 � � � � � 1

d -box containing 
. �

This box has volume 1=d!, which is smaller than the volume 1=dd=2 of the cube
with diagonal 1 (see Table 1). We will make two di�erent re�nements of this
construction. The �rst one gives slightly smaller sleeping bags in low dimensions,
by removing some parts of the box in Theorem 1. The second one gives considerably
smaller rectangular boxes in higher dimensions.

We use the following notation. Let 
 be a curve in Rd and � a projection of Rd

to R. Then we let w�(
) be the length of the interval �(
). For an hyperplane
H we let wH(
) = w�(
) where � is the orthogonal projection projecting H to a
single point. We let the width w(
) of 
 be min� w�(
). Finally, we let t(d) be the
supremum of w(
) over all curves 
 of length 1 in Rdg. Theorem 1 is a combination
of the two facts that t(d) � d�1 and that there is a rectangular sleeping bag of

volume
Qd

i=1 t(i). In Section 3 we prove that d�3=2 � t(d) � 9

2

p
log d+1

(d�3)3=2 .

2. A construction for small sleeping bags in low dimensions

We can reduce the volume of the sleeping bag in Theorem 1 by a constant factor
by taking the blanket of Norwood, Poole, and Laidacker as the starting point of
the induction. The following theorem makes a more substantial improvement on
this construction by rounding o� the corners of the box. Recall that a set S is star



A SMALLER SLEEPING BAG FOR A BABY SNAKE 3

convex if there is a central point p 2 S such that for every point x 2 S, the line
segment from p to x lies entirely in S.

Theorem 2. Let R be a star convex sleeping bag in d� 1 dimensions. Let p be a

central point of R. Let R0 be the subset of Rd contained between the hyperplanes

xd = 0 and xd = 1=d, such that the intersection of R0 with the hyperplane xd = h
is a copy of R scaled down by a factor

1� 1

d
+

r
1

d2
� h2

around p. Then R0 is a valid sleeping bag in d dimensions.

Proof. Let 
 be a curve in R
d of unit length parameterized by arc length. As

in the proof of Theorem 1, let H be a hyperplane passing through the points

(1=2d); 
(3=2d); : : : ; 
((2d � 1)=2d). Let H1 and H2 be the hyperplanes parallel
to H touching 
, such that 
 lies between them. Clearly wH (
) is the distance
between H1 and H2, and for notational convenience we denote this number by w.
We let ` denote the length of the projection of 
 on H and we start by deriving an
inequality relating w to `.

Let w1 and w2 be the distances from H to H1 and H2 respectively. We divide

 into 2d arcs 
1; : : : ; 
2d of equal length. Note that each of them has an endpoint
in H . If the arc 
k = 
[(k � 1)=2d; k=2d] contains a point at distance w1 from H ,
then the length `(
k) of the projection of 
k on H is at mostr

1

4d2
� w2

1 :

There is also an arc 
l containing a point at distance w2 from H on the other side
of H . The sum w(
k) + w(
l) of the lengths of the projections of 
k and 
l on H
is at most

(1)

r
1

4d2
� w2

1 +

r
1

4d2
� w2

2 :

Under the condition that w1 + w2 = w, this is maximized by taking w1 = w2, so
that (1) becomes r

1

d2
� w2:

Under the assumption that k 6= l, it follows that

` � 1� 1

d
+

r
1

d2
� w2:

We will show that w cannot be greater than this even if k = l. Even without taking
into account that 
k must return to H after visiting H1 and H2, we get

` � 1� 1

2d
+

r
1

4d2
� w2 = 1� 1

d
+

r
1

4d2
� w2 +

1

2d
=

= 1� 1

d
+

s
1

2d2
� w2 +

1

d

r
1

4d2
� w2 � 1� 1

d
+

s
1

2d2
� w2 +

1

d

r
1

4d2
=

= 1� 1

d
+

r
1

d2
� w2:
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Hence the projection of 
 on H can be covered by a copy Rw of R scaled down by
a factor

1� 1

d
+

r
1

d2
� w2:

This shows that 
 can always be covered by a prism over Rw of width w. Since R
is star convex, this prism, and hence 
, can be covered by R0. �

We now compute the volume of the sleeping bag obtained in Theorem 2. The
volume of Rw is

vol(R) �
 
1� 1

d
+

r
1

d2
� w2

!d�1

:

Hence

(3) vol(R0) = vol(R) �
Z 1=d

0

 
1� 1

d
+

r
1

d2
� w2

!d�1

dw =

= vol(R) � 1
d
�
Z 1

0

�
1� 1

d

�
1�

p
1� x2

��d�1
dx;

by the substitution w = x=d.
The integral in (3) can of course be evaluated for any d. If we let R be the two

dimensional blanket of Norwood, Poole, and Laidacker, then Theorem 2 gives us a
three dimensional sleeping bag with volume�

14

81
+

�

27

� p
3

12
+

�

24

!
;

or about 0.079597.
We now estimate the quotient vol(R0)=vol(R) for large d. Using the inequality

1� y � e�y, with y = (1�p
1� x2)=d, we obtain�

1� 1

d

�
1�

p
1� x2

��d�1
� d

d� 1
e
p
1�x2�1:

Hence
vol(R0)

vol(R)
� 1

d� 1

Z 1

0

e
p
1�x2�1 dx:

Since R0 is also star convex, it follows by induction on d that there exists a
d-dimensional valid sleeping bag with volume (at most)

cd�1

(d� 1)!
;

where

c =

Z 1

0

e
p
1�x2�1 dx � 0:82550:

An even smaller sleeping bag in R
3

In three dimensions we can �nd an even smaller sleeping bag. Recall that t(3)
is the maximal width of any curve of length 1 in R3 . Let R be the two dimensional
blanket described by Norwood, Poole, and Laidacker pictured in Figure 1.
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Theorem 3. The prism over R scaled down by a factor
p
1� t(3)2 and with height

t(3) is a valid sleeping bag. It has volume t(3)(1� t(3)2)(
p
3=12+�=24). In partic-

ular since t(3) � 0:30331, there is a valid sleeping bag in R3 with volume less than

0:075803.

Proof. Let 
 be an arc in R
3 . If w�(
) � t(3) for every direction �, then 
 �ts

in a cube with side t(3). Since a square can easily be placed in R as long as
the diagonal is at most 1=2, the cube will �t in the described prism as long as
1
2

p
1� t(3)2 � t(3)

p
2. This is true if t(3) � 1=3, which is true by the lemma

below.
Suppose therefore that there is a projection �0 for which w�0(
) > t(3). By

continuity there is a � for which w�(
) = t(3). Now the projection of 
 to the

hyperplane orthogonal to � is a two-dimensional arc of length at most
p
1� t(3),

which will �t in a copy of R scaled down by the same factor. It is now clear that
all of 
 can be �tted into the given prism.

The last statement of the theorem follows from the lemma below. �

Lemma 4.

t(3) � 1p
1 + �2

:

Proof. Let 
 be a curve of unit length in R3 . Let � be the orthogonal projection to
the line through the endpoints of 
, and let H be a plane orthogonal to this line.
Let w = w�(
). The length of the projection of 
 to H is at most

p
1� w2. Note

that the projection of 
 to H is a closed curve.
It is a well known fact from convex geometry that the average width, taken over

all directions, of a closed curve of unit length in two dimensions is at most 1=�
(with equality if the curve equals the boundary of its convex hull).

Hence in some direction, the width of 
 is at most
p
1� w2=�. We therefore

have

(4) w(
) � min(w;
p
1� w2=�):

To get an upper bound for the right hand side of (4), we put w =
p
1� w2=�,

and solve for w, to get w = 1=
p
1 + �2. �

We end this section with a table comparing the di�erent constructions.

methodndimension 3 4 5 6 7

The cube with diagonal 1 0:19245 0:0625 0:017889 4:63 � 10�3 1:10 � 10�3
B. Lindstr�om's sleeping bag 0:15953
The box of Theorem 1 0:16667 0:041667 8:33 � 10�3 1:39 � 10�3 1:98 � 10�4
The rounded prism of Theorem 2 0:079597 0:017037 2:90 � 10�3 4:08 � 10�4 4:91 � 10�5
The prism of Theorem 3 0:075803

Table 1. Comparison of the volumes of some sleeping bags.
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3. Bounds for t(d) in higher dimensions

In this section we estimate t(d) for large d. Apart from the immediate application
to the sleeping bag problem we believe that the estimation of t(d) is an interesting
problem in itself. An exact calculation of t(2) (approximately 0.438925) can be
found in [Sc]. A description of the curve giving the lower bound on t(2) can be
found in [SW].

Theorem 5. t(d) � d�3=2.

Proof. Take the curve 
 that consists of d segments of length 1=d, where the i'th
segment is in direction of the i'th coordinate axis. Now take any linear function

� : Rd ! R, �(x1; x2; : : : ; xd) =
Pd

i=1 aixi, where
Pd

i=1 a
2
i = 1. There has to be

some ai � d�1=2. This means that the i'th segment of 
 has a projection of size at
least d�3=2. �

The rest of the section is devoted to the following upper bound on t(d).

Theorem 6.

t(d) �
9
2

p
log d+ 1

(d� 3)3=2
:

We need a few preliminary results.

Lemma 7. The surface area of the spherical cap de�ned by x1 > c, kxk = 1 in Rd ,

equals

2�(d�1)=2

�
�
d�1
2

� Z 1

c

(1� x2)(d�3)=2 dx:

Proof. We use the fact that the volume of the d� 1-dimensional unit ball equals

2�(d�1)=2

(d� 1)�
�
d�1
2

� :
The surface area in question equals d times the volume of the region in Rd de�ned

by kxk � 1, x1=kxk � c. This is

(5)
2d�(d�1)=2

(d� 1)�
�
d�1
2

�
0
@Z c

0

 p
1� c2

c
x

!d�1

dx+

Z 1

c

�p
1� x2

�d�1
dx

1
A =

=
2�(d�1)=2

(d� 1)�
�
d�1
2

� �c(1� c2)(d�1)=2 + d

Z 1

c

(1� x2)(d�1)=2 dx

�
:

Di�erentiating the second factor of (5) with respect to c, we obtain

(1� c2)(d�3)=2(1� dc2)� d(1� c2)(d�1)=2;

which simpli�es to (1� d)(1� c2)(d�3)=2. Hence (5) equals

(6)
2�(d�1)=2

�
�
d�1
2

� Z 1

c

(1� x2)(d�3)=2 dx+ constant:

Since both (5) and (6) tend to 0 as c! 1, the constant is zero. �

Lemma 8. Suppose x 2 Rd , c 2 [0; 1] and let � be a random projection from R
d to

R. Then

Pr (j�xj � ckxk) � (1� c2)(d�3)=2:
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Proof. By symmetry we can clearly assume that x = e1, the unit vector in the �rst
dimension. The surface area of the part of Sd with x1 > c is equal to

2�(d�1)=2

�
�
d�1
2

� Z 1

c

(1� x2)(d�3)=2 dx:

Hence

(7) Pr (j�xj � ckxk) =
R 1
c
(1� x2)(d�3)=2 dxR 1

0 (1� x2)(d�3)=2 dx
�

R 1
c
(1� x2)(d�3)=2 dxR 1�c

0 (1� x2)(d�3)=2 dx
=

=

R 1�c
0

(1� (x+ c)2)(d�3)=2 dxR 1�c
0 (1� x2)(d�3)=2 dx

� (1� c2)(d�3)=2;

the maximal value of the quotient of the integrands. �

As in the proof of Theorem 1, let 
 be a curve parameterized by arc length. We
choose two integers d1 and d2, to be speci�ed later, such that d1+d2 = d+1. Take an
orthogonal linear projection � that projects Rd to Rd2 , such that all 
((2i+1)=2d1),
i = 0; : : : ; d1� 1, projects to the same point, which we can assume to be the origin.
We compose this projection with a random projection � from R

d2 to R. We analyze
the combined projection � = � Æ � .
Lemma 9. Let p be any point on 
, and let h > 0. Then

Pr (j�(p)j > h) � �1� 4d21h
2
�(d2�3)=2

:

Proof. Note that the distance from p to the nearest point 
((2i+1)=2d1) is at most
1=2d1. We now apply Lemma 8 (in d2 dimensions). �

Proof of Theorem 6. We now divide the curve 
 into N parts. The probability
that at least one of the midpoints of these parts is mapped by � to a point at
distance more than h from the origin is at most

N � �1� 4d21h
2
�(d2�3)=2

:

If d1, d2, N and h are chosen so that

1�N
�
1� 4d21h

2
�(d2�3)=2

> 0;

then with positive probability none of the points �(
((2i + 1)=2N)) is at distance
more than h from the origin, and hence no point on �(
) is at distance more than
h+ 1=2N from the origin. It will follow that t(d) � 2h+ 1=N .

By continuity, having chosen d1, d2 and N , we can choose h so that

1�N
�
1� 4d21h

2
�(d2�3)=2

= 0:

Putting d2 = d� d1 + 1, and solving for h, we get

h =

p
1�N�2=(d�d1�2)

2d1
;

and consequently,

t(d) �
p
1�N�2=(d�d1�2)

d1
+

1

N
:
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Using the inequality 1� e�x � x, with x = logN � 2=(d� d1 � 2), we obtain

t(d) �

q
logN � 2

d�d1�2

d1
+

1

N
=
p
logN �

s
2

d21(d� 2� d1)
+

1

N
:

We now optimize our choice of d1 and d2. To maximize d21(d�2�d1), we choose
d1 � 2

3d. We have to take into account that d1 has to be an integer, but in any

case we can make sure that d21(d� 2� d1) � 4
27 (d� 3)3.

We then have

t(d) �
s

27

2(d� 3)3

p
logN +

1

N
:

We now choose N to be d3=2 rounded to the nearest integer. This is slightly
smaller than the optimal value, but the exponent 3=2 is the best one.

We obtain

t(d) �
s

27

2(d� 3)3

p
log d3=2 +

1

(d� 1)3=2
�

9
2

p
log d+ 1

(d� 3)3=2
:

This gives a better bound than that of Theorem 1 when d � 128. Theorem 5
immediately gives the following corollary:

Corollary 10. The rectangular t(1)� t(2)� � � � � t(d)-box has volume less than

(c
p
log d)d

d3d=2
;

for some constant c.
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