Improved bounds for bounded occurrence constraint satisfaction

Johan Håstad
Royal Institute of Technology

May 19, 2015

Abstract

We show how to improve the dependence on the number of occurrences of a variable when approximating CSPs. The result applies when the interesting part of the predicate is odd and says that the advantage is $\Omega\left(\frac{D-1}{2}\right)$ if each variable appears in at most D terms.

1 History of this paper

The result of this paper was obtained independently but after the paper by Barak et al [1]. The underlying ideas of the two proofs are essentially the same but as this note was written and the presentations of [1] and this note are quite different I decided to make a very primitive version of this note available to the public. For a proper academic paper discussion of the problem and its history we refer to [1].

2 The argument

Let the multilinear expansion of the objective function be

$$f(x) = \sum f_\alpha x^\alpha$$

where each term is of degree at most k and each variable appears in at most D terms. We have the following theorem.

Theorem 2.1 There is a constant d_k only depending on k such that in probabilistic polynomial time it is possible to find an assignment x such

$$|f(x)| \geq d_k D^{-1/2} \sum |f_\alpha|.$$

We suspect that the methods discussed in [1] are sufficient to derandomize also the algorithm in the current paper.
Proof: We first give the algorithm.

1. Select a random set, S, of the variables by including each variable in S with probability one half. For notational convenience we rename the variable x_i to y_i if it is placed in S.

2. Select uniformly random values, y_0^i for the variables of S. Let $g(x) = f(x, y_0^i)$ be the induced function in the remaining variables.

3. Write $g(x) = g^0(y_0^i) + \sum_i x_i g_i(y_0^i) + G^2(x, y_0^i)$ where G^2 contains all terms that remain at least degree two in the x-variables.

4. Find a suitable parameter t and set x_i to the sign of $g_i(y_0^i)$ with probability $(1 + t)/2$ for all i independently.

5. If the value obtained is not large enough repeat from step 1.

We return how to find a suitable parameter t later. Let us analyze this procedure. We say that a set α is good if it contains exactly one element of S. In expectation we have

$$E \left[\sum_{\alpha \text{ good}} |f_{\alpha}| \right] = k2^{-k} \sum_{\alpha} |f_{\alpha}|.$$

The good sets naturally fall in the classes N_i where $\alpha \in N_i$ if it contains only x_i of the variables not in S. It is not difficult to see that conditioned on the first two steps the expected value of $f(x, y_0^i)$ is a degree k polynomial, $Q(t)$. If we let q_1 denote the coefficient of the linear term we have $q_1 = \sum |g_i(y_0^i)|$. We claim that

$$E\left[|g_i(y_0^i)|\right] \geq c_k E\left[(g_i(y_0^i))^2\right]^{1/2} = c_k \left(\sum_{\alpha \in N_i} f_{\alpha}^2 \right)^{1/2} \geq D^{-1/2} c_k \sum_{\alpha \in N_i} |f_{\alpha}|,$$

for a constant c_k depending only on k. Indeed the first inequality is just saying $\|g_i\|_1 \geq c_k \|g_i\|_2$ which is true as all L^p-norms are comparable for degree $k - 1$ polynomials. The last step follows from Cauchy-Schwarz inequality as

$$\sum_{\alpha \in N_i} |f_{\alpha}| \leq \left(\sum_{\alpha \in N_i} 1 \right)^{1/2} \left(\sum_{\alpha \in N_i} f_{\alpha}^2 \right)^{1/2} \leq \sqrt{D} \left(\sum_{\alpha \in N_i} f_{\alpha}^2 \right)^{1/2}.$$

As the union of all N_i give all the good sets we conclude from (1) that

$$E[q_1] = E \left[\sum_i |g_i(y_0^i)| \right] \geq c_k D^{-1/2} E \left[\sum_{\alpha \text{ good}} |f_{\alpha}| \right] \geq k2^{-k} c_k D^{-1/2} \sum_{\alpha} |f_{\alpha}|,$$

(2)
It is easy to see that \(q_1 \leq \sum_\alpha |f_\alpha| \) and thus with probability at least \(\frac{1}{2} k 2^{-k} c_k D^{-1/2} \) we have
\[
q_1 \geq \frac{1}{2} k 2^{-k} c_k D^{-1/2} \sum_\alpha |f_\alpha|.
\]

Now recall Markov brothers’ inequality which says that if \(P \) is a polynomial of degree \(k \) then
\[
\max_{t \in [-1,1]} |P(t)| \geq c'_k P'(0),
\]
where \(c'_k \) is an explicit and known constant. This implies that there is a value of \(t \) such that that
\[
|Q(t)| \geq \frac{1}{2} k 2^{-k} c'_k c_k D^{-1/2} \sum_\alpha |f_\alpha|.
\]

Once \(y^0 \) is chosen, the polynomial \(Q \) is completely explicit and hence it is possible to find (a very good approximation of) the optimal \(t \). In particular it is possible, in polynomial time, to find a value of \(t \) which satisfies \(|Q(t)| \geq \frac{1}{3} k 2^{-k} c'_k c_k D^{-1/2} \sum_\alpha |f_\alpha| \). Setting \(d_k = \frac{1}{4} k 2^{-k} c'_k c_k \) it is easy to see that the algorithm succeeds with a good probability.

Let us end with some brief comments. First observe that there are several ways to choose a suitable \(t \). As one alternative one could use a uniformly random \(t \) and use an inequality of the form then
\[
E_{t \in [-1,1]}[|P(t)|] \geq c''_k P'(0),
\]
which is clearly true for some value of \(c''_k \) even if I do not know a reference and the best value for \(c''_k \). As a further alternative [1] uses extrema of Chebychev polynomials as a set of possible choices for \(t \).

We might be interested in finding an assignment such that \(f(x) \) is large and positive. If \(f \) is odd this is easy since we can simply negate an \(x \) giving a large negative value. In the general case this is not possible and indeed, as also observed in [1], this is a real problem as can be seen from the following example.

Let us take Max-Cut where we score 2 for cut edges and \(-2\) for not cut edges. Consider the complete graph on \(D + 1 \) vertices. We have the objective function
\[
-2 \sum_{i > j} x_i x_j = (\sum x_i^2) - (\sum x_i)^2 \leq D + 1
\]
and thus the global optimum is at most \(D + 1 \). On the other hand the sum of the absolute values of all coefficients is \(\Omega(D^2) \) (and the global maximum of the absolute value is also \(\Omega(D^2) \)). This implies that to get a general result for arbitrary predicates that we can beat the trivial approximation ratio by an additional term \(\Omega(D^{-1/2}) \) we must use that fact the global maximum is large. Thus something new is needed.
References