MUSCLE RECEPTORS
Muscle receptors

Muscle spindles and Golgi tendon organs

Muscle spindles respond to stretch of specialized muscle fibers

Golgi tendon organs are sensitive to change in tension
Discharge rate of 1b afferent fibers from Golgi tendon organs signals the force in a muscle
Functional differences between spindles and tendon organs derive from their different anatomical arrangements within muscle.
Primary and secondary ending in muscle spindles have different firing properties

The primary ending is highly sensitive to the velocity of stretch
Two types of gamma motor neurons alter the responsiveness of spindles

Dynamic and static gamma motor neurons innervate different intrafusal fibers

Effects of selective stimulation of dynamic and static gamma motor neurons on firing of spindle endings

- **A**
 - Imp/sec
 - mm
 - Stimulate static gamma fiber

- **B**
 - mm

- **C**
 - Imp/sec
 - .2 sec
 - Stimulate dynamic gamma fiber
The dynamic sensitivity of primary endings results from unusual mechanical properties of the dynamic nuclear bag fibers of the muscle spindle.

The dynamic bag fiber has an elastic response to stretch in its central region and viscous response in its polar regions.

Effect of muscle stretch on intrafusal fibers:
- C - nuclear chain fiber
- DB - dynamic nuclear bag fiber
- SB - static nuclear bag fiber

Effect of stimulation of dynamic gamma motor neuron:
- With stimulation
- Without stimulation
The CNS can control sensitivity of muscle spindles through the gamma motor neurons

During active muscle contractions the ability of the spindles to sense length changes is maintained by activation of gamma motor neurons.
Alpha-gamma coactivation

Activity of static and dynamic gamma motor neurons during locomotion

G EMG
Static GγMN

G EMG
Dynamic GγMN
Gamma motor neuron activity can be adjusted independently of alpha motor neuron activity

Gamma motor neuron activity is set at different levels for different types of behavior

Behavioral state: Rest, Sitting, Stance, Slow walk, Fast walk, Imposed movements, Paw shakes, Beam walking

Dynamic Level of fusimotor activity

0 0 0 0 + +++ +++ +++

Static Level of fusimotor activity

0 + + ++ +++ + + +++
Discharge of muscle spindle afferents produces stretch reflex
The stretch reflex acts like a negative feedback loop

Diagram:
- Descending facilitation and inhibition
- Alpha motor neuron firing
- Motor neuron
- Spindle afferent discharge
- Spindle
- Muscle
- Force
- Load
- Disturbance
- Length change
Innervation of muscle and muscle spindle

Deafferentation of the muscle eliminates the stretch reflex
Sensory signals from muscle spindles produce reflex responses through spinal reflex pathways and long-loop reflex pathways that involve supraspinal regions.
1b afferent fibers from Golgi tendon organs provide a negative feedback system for regulating muscle tension
Conclusions

1. Specialized sensory receptors (spindles and tendon organs) in the muscle provide feedback to the CNS regarding the amount the muscle stretch and tension.

2. Muscle spindles are located within the muscle and provide signals on the muscle length. The length of the muscle and changes in length are coded by the pattern and frequency of action potentials in the primary or Ia afferents and secondary or Group II afferents. Gamma motor neurons innervate the spindle fibers and can adjust the sensitivity of the spindle.

3. Golgi tendon organs lie within the musculotendinous junctions and are activated when tension is produced by nearly active motor units.

4. Muscle spindles and tendon organs provide the CNS with continuous information about the mechanical state of the muscle. Sensory signals from muscle receptors are transmitted to the spinal cord as well as to the higher levels of the central nervous system.

5. Discharge of muscle spindle afferents evokes stretch reflex. It is a monosynaptic spinal reflex, which allows muscle tone to be regulated quickly and efficiently without direct intervention by higher centers. Descending control signals adjust the gain of the reflex loops, adapting them to the requirements of specific motor acts.

6. Discharge of Golgi tendon organ Ib afferents disynaptically inhibits the discharge of homonymous alpha motor neurons, thus providing a negative feedback mechanism for regulation of muscle tension.