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Abstract – When tracking a large number of targets, it is
often computationally expensive to represent the full joint
distribution over target states. In cases where the targets
move independently, each target can instead be tracked with
a separate filter. However, this leads to a model-data as-
sociation problem. Another approach to solve the prob-
lem with computational complexity is to track only the first
moment of the joint distribution, the probability hypothe-
sis density (PHD). The integral of this distribution over any
area S is the expected number of targets within S. Since no
record of object identity is kept, the model-data association
problem is avoided.

The contribution of this paper is a particle filter imple-
mentation of the PHD filter mentioned above. This PHD
particle filter is applied to tracking of multiple vehicles in
terrain, a non-linear tracking problem. Experiments show
that the filter can track a changing number of vehicles ro-
bustly, achieving near-real-time performance.

Keywords: Bayesian methods, finite set statistics, particle
filters, random sets, probability hypothesis density, sequen-
tial Monte Carlo, terrain tracking

1 Introduction
When tracking multiple targets in general, the size of the

state-space for the joint distribution over target states grows
exponentially with the number of targets. When the num-
ber of targets is large, this makes it impossible in practice
to maintain the joint distribution over target states. How-
ever, if the targets can be assumed to move independently,
the joint distribution does not have to be maintained. A
straight-forward method is to assign a separate filter to each
target [3, 16]. A drawback with this approach is that it leads
to a model-data association problem [3].

A mathematically principled alternative to the separate
filter approach is to propagate only the first moment of the
joint distribution, the probability hypothesis density (PHD)
[12, 13]. This entity is described in Section 4.1, and is de-

fined over the state-space for one target. It has the property
that for each sub-area S in the state-space, the integral of
the PHD over S is the expected number of targets within
this area. Thus, peaks in the PHD can be regarded as esti-
mated target states. Since the identities of objects are not
maintained, there is no model-data association problem.

The main contribution of this paper is a particle filter
[5, 7] implementation of PHD tracking, the PHD particle
filter. The PHD particle filter implementation is described
in Section 4.2.

Particle filtering (Section 3.1) is suited for tracking with
non-linear and non-Gaussian motion models. Here, the
PHD particle filter is applied to tracking of multiple ve-
hicles in terrain (Section 5), a problem which is highly
non-linear due to the terrain (Section 5.3). The vehicles
are observed by humans situated in the terrain. Two things
should be noted about this application: Since the observa-
tions originate from humans rather than automatic sensors,
the degree of missing observations is much higher than the
degree of spurious observations. Furthermore, the time-
scale is quite long – one time-step is on the order of a few
seconds. Thus, the relatively high computational complex-
ity of particle filters compared to, e.g., Kalman filters pro-
vides less of a problem for real-time implementation than it
would in many other applications. Experiments in Section
6 show the PHD particle filter to be a fast, efficient and ro-
bust alternative to tracking of the full joint distribution over
targets.

2 Related work
Multi-target tracking. The problem of tracking multiple
targets is more difficult than the tracking of a single target
in two aspects.

If the number of targets is known and constant over time,
the state-space (spanned by the indiviual state-spaces of all
targets) has a known and constant dimensionality. However,
if the number of targets is unknown or varies over time, the
number of targets, N , is itself a (discrete) random variable,



and a part of the state-space. Since the dimensionality of the
state-space varies with N (e.g., two targets are described by
twice as many parameters as a single target), it is not pos-
sible to compare two states of different value n of N using
ordinary Bayesian statistics. One way to address this prob-
lem [3, 6] is to estimate N separately from the rest of the
state-space, and then, given this, estimate the other state
variables knowing the size of the state-space. Another [19]
is to assume N known and constant, and model some of
the targets as “hidden”. A third approach [1, 8] is to do the
likelihood evaluation in a space of constant dimensionality
(the image space), thus avoiding the problem of compar-
ing spaces of different dimensionality. However, the prob-
lem can also be addressed by employing finite set statistics
(FISST) [4, 11] which is an extension of Bayesian analysis
to incorporate comparisons of between state-spaces of dif-
ferent dimensionality. Thus, a distribution over N can be
estimated with the rest of the state-space. FISST has been
used extensively for tracking [11, 12, 13, 15], mainly im-
plemented as a set of Kalman or α-β-γ-filters. The particle
filter presented here is formulated within this framework.

The second problem with multi-target tracking in general
is that the size of the state-space grows exponentially with
the number of targets. Even with tracking algorithms that
very efficiently search the state-space, it is not possible to
estimate the joint distribution over a large number of targets
with a limited computational effort. However, if the tar-
gets move independently, simplifications can be introduced.
One approach is simply to track each target using a sepa-
rate filter, e.g. [3, 16]. This simplification allows for track-
ing of a large number of targets, but leads to a model-data
association problem, addressed by e.g. joint probabilistic
data association (JPDA) [3]. To avoid this problem, Mahler
and Zajic [12, 13] formulate an algorithm for propagating
a combined density (PHD) over all targets, instead of mod-
eling the probability density function (pdf) for each indi-
vidual target. We present a particle filter implementation of
this PHD filter.

Terrain tracking. The problem of tracking in terrain is
that the motion model highly non-linear, due to the vari-
ability in the terrain. This makes linear Kalman tracking
approaches like Interacting Multiple Models (IMM) [14]
inappropriate, since it is there difficult to model the terrain
influence in a general manner. However, in a simplified
environment, such as a terrain map with only on/off road
information, IMM-based approaches are successful [10].
Another type of approach is to formulate the terrain as a
potential field [9, 18] or an HMM [10], where the transi-
tion probabilities correspond to terrain movability in that
area. This allows for modeling of the non-linearities in the
terrain. However, the potential field approach is compu-
tationally expensive [9]. Furthermore, a comparison [10]
between the HMM and an IMM filter shows the IMM ap-

proach to be more efficient in a linearized situation.
We take a slightly different approach. To cope with

the non-linearities of the terrain tracking problem in a
mathematically principled way, we use particle filtering
(also known as bootstrap filtering [5] or Condensation [7]),
which has proven useful for tracking with non-linear and
non-Gaussian models of motion and observations.

3 Bayesian filtering
We start by describing the formulation of the discrete-

time tracking problem for a single target, with exactly one
observation in each time-step.

In a Bayesian filter, the tracking problem is formulated
as an iterative implementation of Bayes’ theorem. All in-
formation about the state of the tracked target can be de-
duced from the posterior distribution fXt |Z1:t

(xt | z1:t)
over states Xt, conditioned on the history of observations
Z1:t from time 1 up to time t. The filter consists of two
steps, prediction and observation:

Prediction. In the prediction step, the prior distribution
fXt |Z1:t−1

(xt | z1:t−1) at time t is deduced from the poste-
rior at time t − 1 as

fXt |Z1:t−1
(xt | z1:t−1) =∫
fXt |Xt−1,Z1:t−1

(xt |xt−1, z1:t−1)

fXt−1 |Z1:t−1
(xt−1 | z1:t−1) dxt−1 (1)

where the probability density function (pdf)
fXt |Xt−1,Z1:t−1

(xt |xt−1, z1:t−1) is defined by a model of
motion in its most general form.

Often, however, the state at time t is generated from the
previous state according to the model

Xt = φ(Xt−1,Wt) (2)

where Wt is a noise term independent of Xt−1.
This gives fXt |Xt−1,Z1:t−1

(xt |xt−1, z1:t−1) ≡
fXt |Xt−1

(xt |xt−1), with no dependence on the his-
tory of observations z1:t−1.

Observation. In each time-step, observations of the state
are assumed generated from the model

Zt = h(Xt,Vt) (3)

where Vt is a noise term independent of Xt. From this
model, the likelihood fZt |Xt

(zt |xt) is derived. The pos-
terior at time t is computed from the prior (Eq (1)) and the
likelihood according to Bayes’ rule:

fXt |Z1:t
(xt | z1:t) ∝

fZt | Xt
(zt |xt) fXt |Z1:t−1

(xt | z1:t−1) . (4)



To conclude, the posterior pdf at time t is calculated from
the previous posterior at t − 1, the motion model, and the
observations at time t according to Eqs (1) and (4). The
iterative filter formulation requires a known initial posterior
pdf fX0 |Z0

(x0 | z0) ≡ fX0
(x0).

3.1 Particle implementation
If the shape of the posterior distribution is close to Gaus-

sian, and the functions h(.) and φ(.) linear, the system can
be modeled analytically in an efficient manner, e.g. as a
Kalman filter. However, for non-linear models of motion
and observation, the posterior distribution will have a more
complex shape, often with several maxima. In these cases,
a Kalman filter is no longer applicable.

Particle filtering, also known as bootstrap filtering [5]
or Condensation [7], has proven to be a useful tool for
Bayesian tracking with non-linear models of motion and
observation. Particle filtering is a sequential Monte Carlo
method. For an overview of the state of the art in applica-
tions of particle filters, see [2].

The posterior is represented by a set of N state hypothe-
ses, or particles {ξ1

t , . . . , ξ
N
t }. The density of particles in a

certain point in state-space represents the posterior density
in that point [5, 7]. A time-step proceeds as follows:

Prediction. The particles {ξ
1
t−1, . . . , ξ

N
t−1}, represent-

ing fXt−1 |Z1:t−1
(xt−1 | z1:t−1), are propagated in time by

sampling from the dynamical model fXt |Xt−1
(xt | ξs

t−1)

for s = 1, . . . , N . The propagated particles, {ξ̃
1

t , . . . , ξ̃
N

t },
represent the prior fXt | Z1:t−1

(xt | z1:t−1) at time t.

Observation. Given the new observation zt of Zt,
each propagated particle ξ̃

s

t is assigned a weight πs
t ∝

fZt |Xt
(zt | ξ̃

s

t ). The weights are thereafter normalized to
sum to one.

Resampling. Now, N new particles are sampled
from the set of particles with attached weights,

{(ξ̃
1

t , π
1
t ), . . . , (ξ̃

N

t , πN
t )}. The frequency with which

each particle is resampled is proportional to the weight
(Monte Carlo sampling). The result is a particle set with
equal weights, {ξ1

t , . . . , ξ
N
t }, representing the posterior

distribution at time t.

4 FISST multi-target filtering
We now extend the single-target particle filter to com-

prise an unknown and varying number of targets. The set
of tracked objects at time t is a random set [4, 11] Γt =

{X1
t , . . . ,X

NX

t

t }, where Xi
t is the state vector of object i

and NX
t is the number of objects in the set. A certain out-

come of the random set Γt is denoted Xt = {x1
t , . . . ,x

nX

t

t }.
Similarly, the set of observations received at time t is a ran-

dom set Σt = {Z1
t , . . . ,Z

NZ

t

t }, where NZ
t can be larger

than, the same as, or smaller than NX
t . A certain outcome

of the random set Σt is denoted Zt = {z1
t , . . . , z

nZ

t

t }.
Using these random set representations, the multi-target

version of Eq (4) is [4, 11]

fΓt | Σ1:t
(Xt | Z1:t) ∝

fΣt | Γt
(Zt | Xt) fΓt | Σ1:t−1

(Xt | Z1:t−1) (5)

where fΓt | Σ1:t
(Xt | Z1:t) is a multi-target posterior be-

lief density function, fΣt | Γt
(Zt | Xt) multi-target, multi-

observation likelihood, and fΓt | Σ1:t−1
(Xt | Z1:t−1) a

multi-target prior. These densities are defined using finite
set statistics (FISST). Details on FISST can be found in [4],
while a general particle formulation is presented in [17].

4.1 PHD filtering
For a large number of targets, the computational com-

plexity of Eq (5) will be very high due to the size of
the state-space (see also discussion in Section 2). How-
ever, if the signal to noise ratio (SNR) is high and the tar-
gets move independently of each other, the full posterior
fΓt | Σ1:t

(Xt | Z1:t) can in each time step be approximately
recovered from the first moment of this distribution, the
probability hypothesis density (PHD) [13]:

DXt | Σ1:t
(xt | Z1:t) =

∫
fΓt | Σ1:t

({xt} ∪ Y | Z1:t) δY

(6)
which is defined over the state-space Θ of one target, in-
stead of the much larger space ΘNX

t in which the full pos-
terior fΓt | Σ1:t

(Xt | Z1:t) live. This means that the com-
putational cost of propagating the PHD over time is much
lower than propagating the full posterior.

The PHD has the properties that, for any subset S ⊆ Θ,
the integral of the PHD over S is the expected number of
objects in S at time t:

E[|Γt ∩ S|] =

∫
S

DXt | Σ1:t
(xt | Z1:t) dxt . (7)

In other words, it will have local maxima approximately at
the locations of the targets. The integral of the PHD over Θ
is the expected number of targets, nX

t .
To find the target locations, a mixture of Gaussians is

fitted to the PHD in each time step. A local maximum is
then found as the mean of a Gaussian in the mixture.

We now describe one time-step in the PHD filter. The
PHD can not be exactly maintained over time [13]; how
good the approximative estimation of the PHD is depends
on the SNR. In the description below, D̂ is used to denote
an approximately estimated PHD [13].

Prediction. The temporal model of the targets include
birth (appearance of a target in the field of view), death (dis-
appearance of a target from the field of view) and temporal



propagation. Probability of target death is pD and of target
birth pB . Both these probabilities are state independent.

Target hypotheses are, as in the single target case,
propagated from earlier hypotheses according to the dy-
namical model in Eq (2), which defines the motion pdf
fXt |Xt−1

(xt |xt−1), a special case of the general motion
pdf in Eq (1).

In [12], target hypotheses are assumed to be born from
a uniform distribution over Θ. Here, to better explore the
state-space, target hypotheses are born from observations at
the previous time instant. This is possible if the observation
function h(.) (Eq (3)) can be inverted with respect to Xt:1

Xt = φ(h−1
Xt

(Zt−1,Vt−1),Wt) . (8)

This model defines the birth pdf fXt |Zt−1
(xt | zt−1) which

also is a special case of the motion pdf in Eq (1).
In the multi-target case, there is a random set of observa-

tions Σt = {Z1
t , . . . ,Z

NZ

t

t }. To take all observations into
account for target birth, a birth PHD is defined from the set
of birth pdf:s as

DXt | Σt−1
(xt | Zt−1) =

∑
z

i

t−1
∈Zt−1

fXt |Zt−1
(xt | zi

t−1) .

(9)
Given the models of motion, death and birth, the approx-

imate prior PHD [13] is estimated from the approximate
posterior PHD at the previous time instant [12] as

D̂Xt | Σ1:t−1
(xt | Z1:t−1) =

pBDXt | Σt−1
(xt | Zt−1) +∫

(1 − pD)fXt |Xt−1
(xt |xt−1)

D̂Xt−1 | Σ1:t−1
(xt−1 | Z1:t−1) dxt−1 . (10)

Observation. We define pFN as the probability that a tar-
get is not observed at a given time step (the probability of
false negative). Assuming that there are no spurious obser-
vations (a good approximation in our application where the
observations originate from human observers, see Section
5.1), the approximate posterior PHD distribution is com-
puted [12] as

D̂Xt | Σ1:t
(xt | Z1:t) ≈∑

z
i

t
∈Zt

fXt |Zt,Σ1:t−1
(xt | zi

t, Z1:t−1) +

pFND̂Xt | Σ1:t−1
(xt | Z1:t−1) (11)

where

fXt |Zt,Σ1:t−1
(xt | zi

t, Z1:t−1) ∝

fZt |Xt
(zi

t |xt) D̂Xt | Σ1:t−1
(xt | Z1:t−1) , (12)

1In general, h
−1

Xt
(.) exists for sensors for which the observation space

Θo is the same as the state space Θ. Negative examples, for which h
−1

Xt
(.)

is often impossible to obtain, are image sensors.

which is a pdf (with the integral 1 over the state-space).2

Using Eqs (9), (10) and (11), the PHD can be propagated
in time. The result of the tracking is the estimated number
of targets, and the location of the detected maxima in the
posterior approximate PHD in each time step.

4.2 Particle implementation
We will now describe the particle filter implementation

of Eqs (9), (10) and (11). The presentation follows that of
the ordinary particle filter (Section 3.1) to enable compari-
son.

A pdf (with integral 1) is usually represented with N par-
ticles (Section 3.1). Here, a PHD (with integral nX

t ) is rep-
resented with nX

t N particles, nX
t being the expected num-

ber of targets at time t. One time-step proceeds as follows:

Prediction. The posterior PHD at time t−1 is represented

by a set of (unweighted) particles {ξ1
t−1, . . . , ξ

nX

t−1
N

t−1 }.
These are propagated in time by sampling from the dy-
namical model fXt |Xt−1

(xt | ξs
t−1) for s = 1, . . . , nX

t−1N .
The propagated particles are each given a weight $s

t =
(1− pD)/N . The set of weighted propagated particles rep-
resent the second term in Eq (10).

Now, for each of the observations zi
t−1, ∈ Zt−1, i =

1, . . . , nZ
t−1, N particles are sampled from the birth model

fXt |Zt−1
(xt | zi

t−1) (Eq (9)). Each particle is given a
weight $s

t = pB/N . The resulting set of weighted par-
ticles represent the first term in Eq (10).

The two weighted particle clouds are concate-
nated to form a set of particles with attached weights,

{(ξ̃
1

t , $
1
t ), . . . , (ξ̃

(nZ

t−1
+nX

t−1
)N

t , $
(nZ

t−1
+nX

t−1
)N

t )}, that
represent the approximate prior PHD (Eq (10)) at time t.

Observation. For each new observation zi
t ∈ Zt, i =

1, . . . , nZ
t , a copy i of the prior particle set is made. New

weights πi,s
t ∝ $s

t fZt |Xt
(zi

t | ξ̃
s

t ) are computed. For
each set i, the weights are thereafter normalized to sum to
one. The re-weighted particle set represents the i:th term
fXt |Zt,Σ1:t−1

(xt | zi
t, Z1:t−1) in the sum in Eq (11).

The original prior particle set is down-weighted accord-
ing to π0,s

t = pFN$s
t . This set now represent the last term

in Eq (11).

The concatenation of these sets, {(ξ̃
1

t , π
1
t ), . . . ,

(ξ̃
(nZ

t
+1)(nZ

t−1
+nX

t−1
)N

t , π
(nZ

t
+1)(nZ

t−1
+nX

t−1
)N

t )}, is a
weighted representation of the posterior PHD.

Resampling. An unweighted representation of the pos-
terior PHD is now obtained by resampling the weighted
particle set. The expected number of targets is
computed as the sum over all weights in this set:

2Eq (11) was wrongly derived in [13]. However, the error was pointed
out and corrected in [12].



nX
t =

∑(nZ

t
+1)(nZ

t−1
+nX

t−1
)

i=1 πi
t. Now, nX

t N new par-
ticles are Monte Carlo sampled (Section 3.1) from the
weighted set. The result is an unweighted particle set

{ξ
1
t , . . . , ξ

nX

t
N

t } that represents the approximate posterior
PHD D̂Xt | Σ1:t

(xt | Z1:t) at time t.

5 Terrain application
The PHD particle filter is here applied to terrain tracking.

The reason to use particle filtering for terrain tracking is
clarified in Section 5.3 – the motion model of the vehicles
is non-linear and dependent on the terrain. Using particle
filtering, we avoid the need to construct an analytical model
of the motion noise, since the particles provide a sampled
representation of the motion distribution.

5.1 Scenario
The scenario is 841 s long, simulated in time-steps of

five s. Three vehicles (of the same type) travel along roads
in the terrain, with a normally distributed speed of mean 8.3
m/s and standard deviation 0.1 m/s. At one time, one of the
vehicles travel around 500 m off-road over a field.

The terrain is represented by a discrete map m over
position. A pixel in m can take any value T =
{road ,field , forest} (exemplified in the tracking movies
(Section 6) where light grey indicates road , white field ,
and grey forest ). The probability pT (t) that a vehicle
would select terrain of type t to travel in is defined to be
pT (road ) = 0.66, pT (field ) = 0.33, pT (forest) = 0.01.

At each time-step, each vehicle is observed by a human
in the terrain with probability 0.9, 0.5 or 0.1. This means
that pFN = 0.1 in the first case, pFN = 0.5 in the sec-
ond, and pFN = 0.9 in the third. For each observation,
the observer generates a report of the observed vehicle po-
sition, speed and direction, which is a noisy version of
the real state, and of the uncertainty with which the ob-
servation was made, expressed as standard deviation, here
σR = [50, 50, 1, π/8] (m, m, m/s, rad).

5.2 State-space
The state vector for a vehicle is xt = [pt, st, vt] where

pt is position (m), st speed (m/s) and vt angle (rad). The
random set of vehicles is in every time-step limited accord-
ing to NX

t ≤ 5 vehicles for computational reasons.

5.3 Motion model
The motion model of the vehicles is

Xt = Xt−1 + dXt−1 + Wt (13)

where dXt−1 is the movement estimated from the speed
and direction in Xt−1. The noise term is sampled from
a distribution which is the product of a normal distribu-
tion with standard deviation σW = [10, 10, 2, π/4], and
of a terrain distribution. The terrain distribution depends on

probabilities of finding a vehicle in different types of ter-
rain. The sampling from this product distribution is imple-
mented as follows: Sample particles ξi using the normally
distributed noise term. Each particle i now obtains a value
πi = pT (m(ξi)). Resample the particles according to πi

using Monte Carlo sampling.

5.4 Birth model
We assume the birth rate pB and death rate pD of targets

to be invariant to position and time-step, and only depen-
dent on the probability of missing observations pFN . The
goal of the tracking is most often to keep track of all targets
while not significantly overestimating the number of tar-
gets. We design the birth and death model for this purpose.
A high degree of missing observations should give a higher
birth rate since it takes more time steps in general to “con-
firm” a birth with a new observation. The mean number of
steps between observations is 1

1−pF N

. Therefore,

pB = K1−pF N , (14)

pD = K . (15)

The constant K is set empirically to 0.01.

5.5 Observation model
As mentioned in Section 5.1, observations Zt are given

in the target state-space, which means that Eq (3) becomes

Zt = Xt + Vt . (16)

The observation noise Vt is normally distributed with stan-
dard deviation σV = σR (Section 5.1).

6 Results
Using the settings described above experiments were per-

formed to test the performance of the PHD particle filter
(Figure 1) and to compare it with a particle implementa-
tion [17] of the FISST filter [11], which maintains the joint
distribution over the full random set over time (Figure 2).
N = 1000 particles were used to represent a pdf in the
PHD filter. The settings of the FISST particle filter simula-
tion can be found in [17].

The tracking performance was measured in two ways,
comparing the estimated number of targets with the true
value, and measuring the Euclidean distance between the
ground truth target positions and the local maxima in the
PHD (Section 4). 3

3Movies of the six tracking examples can be found at
http://www.foi.se/fusion/mpg/FUSION03/. Two movies
relating to each of the Figures 1a, 1b, 1c, 2a, 2b, and 2c can be
found. For, e.g., Figure 1a, the movie phdFigure1(a).mpg
shows the (discretized) PHD (blue – 0, red – 0.2) with white 95%
error ellipses indicating the Gaussians fitted to the PHD. The movie
terrainFigure1(a).mpg shows the terrain (grey-scale, Section
5.1), the particles (red) and Gaussians (deep blue for high PHD peaks,
lighter for lower peaks). True vehicle positions are indicated by green +,
observations by green *.
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(a) pF N = 0.1
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(b) pF N = 0.5
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(c) pF N = 0.9

Figure 1: Tracking errors for the PHD filter. (a) Observation probability 0.9. (b) Observation probability 0.5. (c) Observation
probability 0.1. The upper graph in each subfigure shows estimated (solid line) number of targets, compared to the true (dashed line)
number. The lower graph shows position errors for the three vehicles. Solid, dashed and dotted lines denote different vehicles. The
dotted target appears after 101 s, the dashed target disappears after 687 s and the solid target after 702 s. Position error is measured as
the Euclidean distance from the true target position to the nearest detected maxima in the estimated PHD.
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(a) pF N = 0.1
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(b) pF N = 0.5
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(c) pF N = 0.9

Figure 2: Tracking errors for the full random set filter, on the same scenario. (a) Observation probability 0.9. (b) Observation
probability 0.5. (c) Observation probability 0.1. A complete description of this simulation can be found in [17].

Both filters were implemented in Matlab, which is a
language not suited for real-time applications. However,
it should be noted that both algorithms required less or
marginally more time than the span of a time-step in the
simulation, 5 s, running in Linux on an ordinary desktop
computer. This indicates the usability of both algorithms
for real-time applications.

One iteration in the FISST particle filter required 4.9 s
on average, while an iteration in the PHD particle filter re-
quired 0.38 s. The generation of the (discretized) PHD and
the fitting of the mixture of Gaussians to the PHD were
identical in the two filters, and required 1.2 s on average.
Thus one time-step in the full FISST particle filter takes
approximately 12 times longer than the corresponding iter-
ation in the PHD filter. This should be kept in mind while
comparing the performance of the two filters.

As expected, the FISST particle filter outperforms the
PHD particle filter in estimating the number of targets (up-
per graph in each subfigure) for all tested values of pFN . If
this is an important aspect of the tracking, a filter maintain-
ing belief over the full random set should be used.

However, the accuracy in position estimation is very sim-
ilar between the two filters. With high or moderate observa-
tion probability (Figures 1a,b and 2a,b), both filters main-
tain track of all targets, save for a few mistakes in the PHD
filter that are quickly recovered from. With a low observa-
tion probability, both filters (Figure 1c and 2c) fail to track
the targets to a high degree. The reasons for that is simply
that the SNR is too low [13, 17].

To conclude, the PHD particle filter’s accuracy in esti-
mating the number of targets is low, and falls quickly with
the SNR. However, the positions of the targets are estimated



with the same accuracy as provided by a filter representing
the full random set.

Thus, the PHD particle filter is a robust and computation-
ally inexpensive alternative to representing the full joint dis-
tribution over the random set, when estimation of the num-
ber of targets is not the primary issue.

7 Conclusions
The contribution of this paper has been a particle filter-

ing implementation of the PHD filter presented by Mahler
and Zajic [12, 13]. The PHD particle filter was applied to
tracking of an unknown and changing number of vehicles in
terrain, a problem incorporating highly non-linear motion,
due to the terrain.

Experiments showed the PHD particle filter to be a fast
and robust alternative to a filter where the full joint distri-
bution over the set of targets was maintained over time.

7.1 Future work
This work could be extended along several avenues of

research. Firstly, the effects of all parameter settings on
the tracking need to be investigated. In the experiments in
Section 6, only the degree of missing observations, pFN ,
was varied.

Furthermore, it would be interesting to investigate more
sophisticated observation models. The experiments here
show clearly that the performance of the filter is strongly
dependent on the SNR. One way to heighten the SNR with
our type of sensors, human observers, is to take negative
information (i.e. absence of reports) into regard. This is
possible if the fields of view of the observers are known.

Finally, a real-time implementation should be made, and
the filter should be tested over longer time periods with
more targets. A larger testbed is currently developed for
this purpose.
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