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Abstract

Decentralised cryptocurrencies such as Bitcoin o�er a new paradigm of

electronic payment systems that do not rely on a trusted third-party. Instead,

the peers forming the network handle the task traditionally left to the third-

party, preventing attackers from spending twice the same resource, and do so

in a publicly veri�able way through Bitcoin's main innovation, the blockchain.

However, due to a lack of synchrony in the network, Bitcoin peers may tran-

siently have con�icting views of the system: the blockchain is forked. This can

happen purely by accident but attackers can also voluntarily create forks to

mount other attacks on the system.

In this work, we describe Bitcoin and its underlying blockchain protocol;

we introduce a formal model to capture the normal operations of the system

as well as forks and double-spending attacks. We use it to de�ne Bitcoin's

fundamental properties in terms of safety, liveness and validity.

We present the current state of the system: �rst, we analyse some of the

most prominent works that academia has produced between 2008 and 2016, as

well as some promising leads to improve the system; then, we use the results

of a measurement campaign to show that the size of the network is relatively

stable because join and leave operations compensate each other, and that blocks

propagate to most of the network in a matter of seconds. We further compare

our results to those usually accepted by the community.

We introduce a Bitcoin network simulator that we have implemented and

present the experiment we have performed to validate it. Finally, we propose a

modi�cation to Bitcoin's operations that can prevent double-spending attacks

and forks without giving up on its main ideological principles, decentralisation

and the absence of source of trust.
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Chapter 1

Introduction

1.1 Motivation

In most parts of the world nowadays, currencies are controlled by a central organi-
sation. Whether they are governments or banks may depend on the place, but that
actually changes very little to the matter at hands: people are required to trust
those third-parties to behave properly when they want to use money. Indeed, many
things can go wrong: the third-party can create money (decreasing its unit value),
and it becomes even more powerful when money gets virtualised through the use of
credit cards and cashier's cheques. When that happens, banks can decide to add
or withdraw any number from anyone's account; should they go bankrupt, all those
trusting them with their savings would also end up facing a situation.

These few examples are but scratching the surface of an important debate in
security and networking: should any system be designed as centralised, requiring
a trusted third-party, or decentralised and based on a trustless model? Both cases
have scenarios to back them up: a large company network would likely be better
o� as a centralised system because the source of trust is embedded in the company
hierarchy and centralisation typically is more e�cient as users can ask the third-
party to shed some light on any doubtful situation. On the other hand, structures
without a clear hierarchy usually have no actor universally accepted as a trusted
party. Thus, a crucial question to ask when choosing between the two models is
�can we trust some people to act for the greater good rather than their own?�, or �is
the trusted third-party trustworthy?� when a system has already been set up.

In 2008, the banking system collapsed in the subprime mortgage crisis. While
most banks powered through it, it made many reconsider the question: can people
really trust anyone to keep their money and generate some more out of it without
being overly greedy and taking inconsiderate risks while doing so?

The same year, Bitcoin [Nak08], also known as the �rst successful decentralised
electronic currency, was created as a negative answer to that question. Its goal was
to provide the fundamental properties expected from any currency while being built
on a trustless model. These properties are the following: �rst, no one should be able

1



CHAPTER 1. INTRODUCTION 2

to use someone else's money without his or her consent1; this is equivalent to the
usual notion of authentication. Then, no one should be able to deny having made a
transaction after it happened: it must ensure non-repudiation.

In this thesis, we study Bitcoin and its formal guarantees as regards these prop-
erties, especially non-repudiation because it is known to have theoretical vulnera-
bilities as regards it. In particular, the possibility of double-spending attacks is a
source of concern: it is currently possible to repudiate transactions by sending the
same coins to two di�erent people; only one of them will get the funds, and the
system will behave as if the other one had never received anything. Currently, as a
precaution, people are advised to wait an average of 60 minutes before considering
a transaction accepted by the network: this prevents the use of Bitcoin in many
daily expenses, cups of co�ee being regularly used as examples where this waiting
period is unthinkable. Thus, the goal of this work is to improve Bitcoin's resilience
to double-spending attacks.

This document comprises three main parts. First, Chapter 2 describes Bitcoin
and its mode of operation, in order to build the formal model needed to de�ne what
Bitcoin guarantees about the evolution of the system. Then, Chapter 3 describes the
current state of the Bitcoin ecosystem, both from the academic point of view through
a survey of the most major papers that have been published on the topic over the
years and as a system via the presentation of an experiment that was conducted
during this work. Finally, Chapter 4 deals with ways to improve Bitcoin.

Additionally, we describe in Appendix A the data structures de�ned by Bitcoin;
in Appendix B, the scripts used in transactions inputs and outputs; in Appendix C,
the networking protocol followed by the reference client, Core v0.12.1; and in Ap-
pendix D, the structure of the messages described by the same protocol. Finally,
Appendix E is a glossary listing all the technical terms de�ned or rede�ned in the
context of Bitcoin; only some acronyms have been left out, such as those from the
TCP/IP stack for the networking aspects.

During this work, we have submitted two papers: Safety Analysis of Bitcoin
Improvement Proposals [ALLS16], which has been accepted, and Handling Bitcoin
Con�icts Through a Glimpse of Structure [LAL], whose acceptance noti�cation is
due on November 18th.

1.2 Notations

This section groups all the notations used throughout this document; it is intended
as a quick reference and some may not make sense before being introduced in the
body of the document.

1As far as this work is concerned, it is not the currency's role to ensure that no one gets anyone
else's consent through coercion.
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0xA Number whose hexadecimal repre-
sentation is A. 0x may be omitted
e.g. for hashes;

160-hash RIPEMD-160(SHA-256(·));

256-hash SHA-256(SHA-256(·));

A All accounts ever created;

Alice, Bob, Carol Three nodes;

Bp Blockchain of store p;

B(b) Blockchain rooted by block b;

B Blockchain of the whole network
rooted by G0;

B All well-formed blocks ever issued;

Core Version 0.12.1 of Bitcoin Core, the
reference client.

c(b) Content of block b, i.e. the list of
transactions it contains;

David, Frank, Gina Three users and,
by extension, their respective wal-
lets;

f Maximum number of malicious nodes
in Π;

G0 Genesis block accepted by all the
nodes in Π;

h(·) Function computing the 256-hash of
an object;

IT Input set of transaction T ;

Lb Con�rmation level of block b;

L′b (Simpli�ed) pseudo-con�rmation
level of block b;

OT Output set of transaction T ;

Pp Mempool of store p;

P (·) Ancestors of a transaction or an ac-
count;

p(b) Parent of block b;

si Solution of input i to the challenge
χoi ;

T All well-formed transactions ever is-
sued;

T ∗ All well-formed non-coinbase trans-
actions ever issued;

Vp Local view of store p;

v(a) Value of account a;

W ′b Weighted pseudo-con�rmation level
of block b;

z Deep con�rmation threshold;

z0 Minimum length di�erence between
two branches to prune one out of
the blockchain;

zcoinbase Deep-con�rmation threshold
for coinbase transactions;

Π Set of nodes present in the system;

ρB(·) Minting scheme of blockchain B;

φT Fee of transaction T ;

χo Challenge of output o;

ζ Minimum weight di�erence between
two branches to prune one out of
the blockchain;

ωB(b) Weight of block b in the context of
blockchain B;

T / a Transaction T is con�ictual be-
cause of account a;

T ./ T ′ Transactions T, T ′ are con�ict-
ing;

≡ Equivalence operator between objects
referring to the same coins;

|| Concatenation operator.
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Section 4.2 additionally de�nes the following speci�c notations:

PKI Public key of identity I;

tI Time stamp of identity I;

νI Nonce of identity I;

β Maximum depth of the blocks included
in a new identity;

γ Target for the identity-generation pro-
cess;

∆ Lifetime of identities;

ε Minimum di�erence between f/|Π| and
1/3;

π· Referee of a transaction, block or in-
put.

Finally, we use the following notations in the appendix:

cmpct(·) Length of an integer stored as
a compact size unsigned integer;

S The set of licit encodings in 4-byte
long base 256 scienti�c notation.



Chapter 2

What is Bitcoin?

2.1 Overview

Bitcoin was introduced in 2008 through a white-paper [Nak08] and has, since then,
generated a lot of interest from several scienti�c communities, related to mathe-
matics and computer science as well as economics, a number of businesses, hackers
and Open-Source developers, and also national agencies. Thus, on July 3rd, 2016, a
Google Scholar search on the word �bitcoin� over English pages, excluding patents
and citations, returned �about 6690 results�; Bitcoin Stack Exchange [B.SE] adver-
tised 22 517 registered users with 7376 visitors per day; and, �nally, the FBI [FBI12]
is but one on a long list of US agencies and bureaus that have looked into Bitcoin for
several legality-related reasons such as money laundering and black market transac-
tions, of which Silk Road, the �eBay of drugs�, is a well-known example [Tra14].

Despite this, what Bitcoin actually is and does is not quite clear, hence a large
vulgarization e�ort supported among others by books [BW14; NBFMG16] and the
Bitcoin community over the Internet [B.SE; BF].

This section presents the Bitcoin protocol, as well as the cryptographic primitives
it uses. Subsequently, Section 2.2 formalises what Bitcoin ensures while Section 2.3
lists some of the most well-known attacks that can target Bitcoin and its network
along with their impact and remedies.

2.1.1 High-level view

In 2008, Satoshi Nakamoto, a pseudonymous author1, published a white paper de-
scribing a way to create, distribute and manage a currency that does not rely on a
trusted third party such as banks [Nak08]. The paper focuses on the major aspect
of Bitcoin's data structure, the blockchain. An implementation of the system was
released shortly after under the name Bitcoin Core [Core]. In the remainder of this
document, we simply call Core the version 0.12.1 of Bitcoin Core, which was the lat-

1Or group thereof: his (or her/their) true identity remains unknown as of November 2016.
Whenever necessary, we will assume that Nakamoto is a single male person.

5
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T1 d1 d3

T3 f1 T4 g2

T2 d2 g1

Figure 2.1: Example of transaction graph. Coinbase transactions are represented
as double circles, regular transactions as circles, and accounts as rectangles. Here,
David creates T3 to send the funds he received in T1 and T2 to Frank on f1 and Gina
on g1; he sends his change on a new account d3. Then, Frank creates T4 to send
funds to Gina on g2. Accounts d3, g1 and g2 are UTxOs.

est and most used Bitcoin client during most of this work; the version number may
be provided for emphasis or when describing other versions, such as Core v0.13.0
which was released during this work. We denote by Alice, Bob, and Carol three
nodes of the Bitcoin network, and by David, Frank, and Gina three users of the
system.

Bitcoin's goal is to provide a fully decentralised currency which resists coun-
terfeiting attempts: units of currency, called bitcoins (�coins�) or satoshis for their
smallest division, cannot be created ex nihilo outside of the protocol. Just as bills,
bitcoins have no intrinsic value: they can be transferred and exchanged at a value
de�ned by the market. Transferring coins is done with transactions: the sender
takes a list of input accounts, proves that she owns them, and sends their content
to a list of output accounts.

A way to model this is through a directed and acyclic transaction graph: the
system mints coins through special transactions called coinbase transactions. After-
wards, coins move from accounts used as inputs by transactions to accounts used
as outputs. An account created as a transaction output that has not served as an
input yet is called an unspent transaction output (UTxO). Figure 2.1 depicts a toy
example.

So far, this process is similar to what happens when using a credit card. The
di�erence is that with a credit card payment, the receiver can wait for a central
authority such as Visa to con�rm that the operation was successful, whereas no
such central authority exists in Bitcoin. Instead, the system relies on a peer-to-peer
network. Whenever a node receives a transaction, it can verify that this transaction
is consistent with the history of the system, i.e. that the input accounts are indeed
su�ciently funded to wire the advertised amounts to the output accounts.

To perform this veri�cation operation, each node must keep a ledger recording
the state of the system. Two natural ways would be to maintain a mapping between
accounts and their associated value, or to record all the operations that altered the
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T1 d1 d3 T ′4 d2

T3 f1

T2 d2 g1 T4 g2

Figure 2.2: Example of double-spending attack where Frank uses transactions T4
and T ′4 to send the same coins to David and Gina: di�erent nodes will have di�erent
views of the ledger.

state of the system: the transactions. Both approaches have upsides and downsides,
and Bitcoin chose the second one as it allows nodes to join the system at any time
and still verify the validity of the entire history of the system without requiring
to trust anyone in the network. Nodes can then compute and maintain the set
of UTxOs as the state of the system, i.e. the list of accounts that can be used as
transaction inputs.

A pitfall of this distributed ledger is that it requires a high level of synchronisation
between nodes to maintain consistency, or else Alice could receive a transaction
stating that David spends some coins before receiving the one sending them to him
in the �rst place; in this scenario, she would reject a valid transaction. Much worse,
part of the network could receive a transaction stating that Frank sends coins to
David (probably in exchange for a service) while some other nodes would receive
another transaction stating that he sends the exact same coins to Gina. Each part
of the network would accept the �rst transaction it receives and reject the other one;
what should happen when either David or Gina tries to spend the coins received
from Frank? This is called a double-spending attack ; Figure 2.2 shows an example
of double-spending attack and Section 2.3.1 describes it in more detail.

Thus, Bitcoin needs a synchronisation mechanism to make sure that the nodes'
view of the distributed ledger are consistent. It implements it with so-called blocks.
A block is an ordered list of transactions, set in a speci�c history by linking to a
parent block, produced at a slow rate. This is achieved by requiring blocks to include
a proof of work (PoW) which ensures that the mean time needed by the network
as a whole to generate a block remains 10 minutes despite the �uctuations of the
network. Section 2.1.2 describes Bitcoin's PoW mechanism. All that is needed for
now is that this process is random, competitive, and di�cult. Thus, only certain
peers try to generate blocks: the so-called miners. This name comes from an analogy
with gold miners: mining, be it gold or blocks, requires e�orts but when the miner
successfully �nds respectively a nugget or a block, she can make a pro�t out of it.

Indeed, since block generation is essential to Bitcoin as it is required to update
the ledger, successful miners are awarded a prize: peers can only emit coinbase
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Block n− 1

Block n

Previous block
Proof of work
Transactions:

T0
T1
...

Figure 2.3: Structure of a block: T0 is a coinbase transaction.

transactions as part of a block, with a limit of one per block. Despite not hav-
ing input accounts, a coinbase transaction sends some coins to an account chosen
by the miner. Those coins have two distinct origins. First, Bitcoin uses coinbase
transactions to mint coins. Initially, it minted 50 coins per block; this amount is
halved every 210 000 blocks, which corresponds in average to four years. Thus, block
420 000, which was the �rst to mint 12.5 coins, was found on Saturday, July 9th, 2016
at 16:46:13 GMT. This halving rule yields an upper bound of 21 million bitcoins in
circulation. Then, to encourage miners to include their transactions in blocks, users
pay fees when they send funds. The fee is chosen by the sender of a transaction: it
corresponds to the coins that are taken from the input accounts and not sent to any
output one. Miners take the fee of each transaction they include in their blocks and
add them all to the output of their coinbase transactions. Fees are intended to take
the role of minting in the block reward as the latter slowly decreases and Bitcoin's
volume of transactions increase. Figure 2.3 shows the general structure of a block.

This yields a sequential ordering of all the transactions recorded in the ledger:
each block orders the transactions it contains, and blocks are ordered by their chain-
ing to the one they see as their direct predecessor in the history of the system; from
this chaining process also derives the name of Bitcoin's ledger: the blockchain. How-
ever, since mining is a random process and communications are not instantaneous,
problems may arise. Speci�cally, nothing prevents two miners from �nding two
blocks that both link to the same parent. When this happens, the blockchain loses
its linearity and adopts a tree structure: the chain is forked. The implications of
such situations are described in Section 2.3.2. In short, each node selects the longest
branch it has fully received as its main branch, i.e. what it considers to be the
only valid history of the system. A fork is resolved when a branch is su�ciently
longer than its competitors to appear longer to all nodes in the network despite
communication delays. This usually happens quickly: even if the network is evenly
distributed between two con�icting branches of equal length, it is very unlikely that
miners on each branch �nd a block approximately at the same time because of their
slow generation rate, and even more so several times in a row. Figure 2.4 shows the
general structure of the blockchain and illustrates forks.

In order to make sure that a transaction con�rmed in the blockchain will not be
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...

0 n n+ 1 n+ 2

n+ 1

Figure 2.4: Structure of the blockchain when a fork arises. Each square represents
a block.

invalidated by a fork containing a con�icting transaction, Bitcoin recommends its
users to consider a block as �xed in the history of the system only when �ve other
blocks have been found after it on its branch. This �gure is derived from the fact
that an attacker with less than 10 % of the total computing power will not be able to
fork the blockchain before a transaction was injected in it and create a chain of size
at least six before the rest of the network does with probability more than 0.1 %; this
would e�ectively revert the transaction and make it permanently invalid [Nak08].

Finally, Bitcoin uses a �ooding mechanism to propagate information: when a
node receives a valid message, i.e. one that is consistent with its view of the state of
the system, it sends it to each of its neighbours. Most nodes use a 3-way mechanism:
instead of directly sending data, they send inventory messages to let their neighbours
know that they can transmit them some information; whenever they receive such a
message and do not know the advertised data, they ask the sender to send it. Thus,
all nodes eventually receive every transaction or block that does not con�ict with
any local view.

With this system, Bitcoin creates a trusted third-party in a trustless network:
the blockchain. Indeed, as long as attackers control less than half of the computing
power, the longest chain will be dominated by honest miners. The adversary will
not be able to go back to an arbitrary point in time, rewrite the history from there
and catch up with the honest chain. This property, its veri�ability, and the limited
power given to a miner �nding a single block make it a shared source of trust in a
possibly adversarial network for as long as the attacker's power is su�ciently limited.

2.1.2 Supporting cryptography

This simple view of Bitcoin already highlights two crucial needs for cryptography:
proofs of ownership and proofs of work (PoW). Bitcoin uses public key cryptography
for the former, and hash functions for the latter.

When selling goods to David, Gina creates an Elliptic Curve Digital Signature
Algorithm (ECDSA) [JMV01] key pair and asks David to sends the funds to the
public key. That way, when she decides to use the account, she can simply sign
the transaction using the private key, and every node will be able to verify the
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signature with the public key that was included in David's transaction. That way,
she proves that she owns the coins. Simply put, it corresponds to asking a bank wire
to a speci�c account, and then using the password previously agreed upon with the
corresponding bank to unlock the funds, with neither a trusted bank nor a globally
accepted password. Appendix B describes the language used to de�ne transactions
outputs and inputs. In this work, we only consider signatures as proofs of ownership.

For the block generation process to work as intended, the PoW scheme must
satisfy four properties:

1. the task must be computationally hard;

2. the di�culty must be parametrisable: the task must not be solvable too
quickly, it should take ten minutes on average to solve it independently of
the total computing power used by the network;

3. the process must be memoryless, i.e. changing the tentative block should not
have an impact on the expected remaining time before �nding a solution,
or else miners would not try to include the newest transactions they receive
and they might continue working on a block even after they have received a
con�icting one if they know they are close to solving the task;

4. the validity of a solution must be easily veri�able.

These properties are met by random one-way functions [Bac97; DN92]: comput-
ing the image of an input is easy (Item 4), but �nding a pre-image of an output is
hard (Item 1). Additionally, making mining a random process with a low success
probability satis�es Item 3: drawing a random number is quick and easy, and the
output of a su�ciently random function will change in a completely unpredictable
way whether the input is barely changed (incrementing a nonce) or heavily modi�ed
(completely changing the block to acknowledge a newly received one). This makes
Item 2 easy to satisfy: it su�ces to adapt the success probability to the rate at
which random numbers are drawn to make the rate at which solutions are found
constant.

Bitcoin has opted for the 256 bit version of Secure Hash Algorithm (SHA)
2 [FIPS180-4] (SHA-256 ) as its random one-way function. Though not perfect,
it seems to constitute, as an unbroken hash function, a su�ciently good approxi-
mation as of November 2016. The success probability is tuned by setting a target :
the PoW of a block b is valid if and only if SHA-256(b) 6 target. This can easily
be implemented via a feedback mechanism: when blocks are found too often, the
target is decreased, and conversely. The di�culty is a more human-readable param-
eter, inversely proportional to the target: it estimates the amount of work needed
to generate a valid PoW. Thus, when blocks are found too often and the target
is decreased, the di�culty is increased. Bitcoin's target is recomputed every 2016
blocks (approximately two weeks) as per the following equation, where expected is
equal to two weeks and real to the time the system took to generate the last 2016
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blocks:

new_target = target ∗max(
1

4
,min(4,

real

expected
)).

Though this simple description gives an overall good idea of Bitcoin's use of
cryptography, it is neither complete nor exact. Indeed, a few more concerns have
been addressed. First, SHA-256 is vulnerable to length-extension attacks, where
h(m||m′) is computed for an unknown message m using only h(m) and m′ for a
known vulnerable hash function h. Even though there is no clear application of this
attack to Bitcoin's context, all hash functions are used in pair: hashing an input to
256 bits is done through SHA-256d, applying twice SHA-256; we call the result of
this operation a 256-hash.

Then, it is theoretically possible for an attacker to develop a way to compute
a private key from the corresponding public one. Since transactions are stored
in the blockchain, attackers could roam through the UTxOs, crack the private keys
unlocking them and create transactions to send the funds to keys under their control.
Though no such attack currently exists in the literature for 64-bit ECDSA key pairs,
the possibility has been mitigated by adding one more step: instead of public keys,
transactions send their outputs to hashes of public keys. The most common hash
function used in transactions is the 160 bit version of RACE Integrity Primitives
Evaluation Message Digest (RIPEMD) [DBP96] (RIPEMD-160 ) and, to prevent
length-extension attacks, it is actually applied on the output of SHA-256; we call
the result of this operation a 160-hash. Then, it su�ces to disclose the public key
along with the signature and verifying the proof of ownership consists in checking
that the former corresponds to its advertised hash, and the latter using the former.
It is furthermore recommended never to send funds twice to the same key, to make
sure that no UTxO is locked by a public key that has been disclosed.

Finally, the PoW of a block is not computed using the complete list of transac-
tions to avoid encouraging miners to mine empty blocks, but on a �xed-size place-
holder, the root of the Merkle tree [Mer88] of the block. Appendix A.4 describes the
construction of this tree.

2.2 Formal model for Bitcoin

This section de�nes a formal environment in order to explicitly derive the guarantees
that Bitcoin provides to its users. Thus, it follows the standardization e�ort initiated
by Anceaume et al. [ALLS16]. Given that Appendix A describes most concepts from
an implementation point of view, this section focuses on a high-level modelling. We
�rst present our assumptions about the network and then the model we propose for
Bitcoin.

2.2.1 General assumptions

In order to de�ne the composition of the network, one �rst needs to specify what its
participants do. Thus, we rely on Antonopoulos's typology [Ant14] as follows.
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De�nition 1 (Roles of Bitcoin peers)
A Bitcoin peer can assume any combination of the following roles:

1. A (Bitcoin) router is an entity of Bitcoin's peer-to-peer network: it maintains a
dynamic set of neighbours with which it exchanges data (blocks, transactions);

2. A miner tries to solve PoWs to �nd blocks;

3. A (blockchain) store maintains a local copy of the blockchain, along with a
mempool;

4. A wallet manages a user's keys, tracks the corresponding UTxOs and helps her
create and sign transactions.

In our model, we de�ne a node as a peer assuming at least the �rst three responsi-
bilities; it may or may not, additionally, be a wallet.

As per [LAL], we assume a network made of a large, �nite but unbounded,
set Π of nodes whose composition may change over time. Each node of Π has
identical networking and computational capabilities. We de�ne an honest node as
one that follows the protocol speci�ed by Core. A Byzantine (or malicious) node
will do anything it can to disturb the execution of the protocol (including possibly
following it whenever that bene�ts the adversary). Finally, a rational node will
follow the protocol but will make any possible choice based on its self-interest; thus,
it will not withhold information but may for example give priority to a transaction
sending funds to itself over a con�icting one that it had received sooner but sends
funds to someone else. We assume that at any time, an upper-bounded proportion of
the nodes in Π are Byzantine and under the control of a single adversary. Because we
focus on �nancial crypto-systems we consider that the rest of Π is made of rational
nodes rather than honest ones. Thus, it is important that algorithms designed in
this setting include incentives to encourage proper behaviour.

Communications between nodes and local computations are assumed to be both
upper-bounded by constants unknown to them. Additionally, the drift between local
clocks is upper-bounded. Note that such an assumption conforms with Bitcoin's
usage of time stamps. This corresponds to a partial synchrony model [DLS88].

Finally, we assume that the cryptographic primitives used by Bitcoin are safe
(forging signatures and �nding hash collisions or pre-image are all impossible for
Bitcoin's computationally bounded nodes).

2.2.2 Bitcoin model

This section follows a bottom-up approach: starting from the most basic object,
it provides de�nitions for all the elements related to Bitcoin relevant to this work
until reaching a formalisation of the following properties: Bitcoin guarantees that
eventually, all transactions that are not involved in con�icts are accepted by all peers
and that there is no money counterfeiting.

Let us start with Bitcoin's most low-level objects: inputs and outputs.
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De�nition 2 (Outputs, inputs, transactions, accounts and fees)
These elements are respectively de�ned as follows:

1. an account a is a set of coins, whose total value is denoted v(a). We denote
by A the set of all accounts ever created in the system;

2. an output o is an account ao ∈ A along with a challenge χo: to spend the
former, the latter must be solved. By extension, v(o) = v(ao);

3. an input i is a pointer to an output oi, and a solution si to χoi . By extension,
v(i) = v(oi);

4. a transaction T is a pair of sets: its inputs IT and its outputs OT . The term
φT =

∑
o∈OT

v(o)−
∑

i∈IT v(i) is called the transaction fee;

5. a coinbase transaction T0 is a transaction whose input set IT0 is empty.

These de�nitions use the notion of coins, which has not already been de�ned.
To avoid splitting a single coin in smaller units, the most convenient de�nition here
is that of satoshis, the smallest unit of currency, rather than their usual meaning of
bitcoins. They are naturally indexed by their order of introduction in the system
and can thus be uniquely identi�ed. See Appendix A.2 for more details. Coinbase
transactions are used by the system to mint new coins through the mining process.
Though accounts have no actual existence in Bitcoin, they provide for the following
useful notations:

De�nition 3 (Cross-type operations)
With a, a′ ∈ A , o, o′ outputs and i, i′ inputs, we de�ne the following equivalence
relation:

a ≡ a′ ⇔ a = a′,

o ≡ a′ ⇔ ao ≡ a′,
i ≡ a′ ⇔ oi ≡ a′.

By extension, with a ∈ A and transaction T , we extend the membership relation as
a ∈ IT ⇔ ∃i ∈ IT , a ≡ i and similarly for OT . We rede�ne intersection and union
of sets S ∈ {IT , OT }, S′ ∈ {IT ′ , OT ′} for transactions T, T ′ as follows, where x can
indi�erently be an account, an input or an output:

x ∈ S ∩ S′ ⇔ ∃s ∈ S,∃s′ ∈ S′, s ≡ s′ ≡ x
x ∈ S ∪ S′ ⇔ (∃s ∈ S, s ≡ x) ∨ (∃s′ ∈ S′, s′ ≡ x)

Let us now restrict our model to objects of interest.

De�nition 4 (Well-formed transactions, outputs and inputs)
We de�ne the well-formed property for transactions, outputs and inputs as follows:
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1. a transaction T is said to be well-formed if and only if either one of the fol-
lowing holds:

a) it is a well-formed coinbase transaction;

b) all of the following holds:

i. |IT | > 1;

ii. ∀i ∈ IT , i is well-formed;
iii. ∀o ∈ OT , v(o) > 0;

iv. ∀T ′ ∈ T ,∀o ∈ OT , ∀o′ ∈ OT ′ , o 6≡ o′;
v. φT > 0;

We denote by T the set of well-formed transactions that have been issued in
the system. We denote by T ∗ its restriction to non-coinbase transactions.

2. an output o is said to be well-formed if and only if ∃T ∈ T such that o ∈ OT
and χo admits at least one solution;

3. an input i is said to be well-formed if and only if oi is well-formed and si
correctly solves χoi .

Objects that are not well-formed cannot propagate in the Bitcoin network be-
cause all rational nodes will reject them, and can only exist transiently as part
of denial of service (DoS) attacks trying to exhaust a node's computing power or
memory in repeated validity checks. Note that De�nition 4 is incomplete as well-
formed coinbase transactions are tackled by De�nition 9. From this point forward,
only well-formed inputs, outputs and transactions will be considered; through this
restriction, accounts are de�ned as by Anceaume et al. [ALLS16].

A notion that is useful in the following is that of ancestors:

De�nition 5 (Ancestors of transactions and accounts)
Let T ∈ T and a ∈ A . We denote by P (T ) and P (a) the sets of ancestors of T and
a, de�ned respectively as:

P (T ) =
⋃

{T ′∈T |OT ′∩IT 6=∅}

({T ′} ∪ P (T ′)),

P (a) =
⋃

{T ′∈T ∗|∃T∈T , a∈OT∧T ′∈P (T )∪{T}}

IT ′ .

If T ∈ T is a coinbase transaction, we have that P (T ) = ∅.

Note that in the de�nition of P (a), there exists at most one T ∈ T such that
a ∈ OT by De�nition 4. The initialisation of the induction derives from the fact
that the input set of coinbase transactions is empty. The set of ancestors of any
transaction or account is �nite, because the system only introduces coins through
coinbase transactions: for any account, it is possible to follow the trail of accounts
to the time each of the coins it contains was minted.
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De�nition 6 (Double-spending and con�ict situations)
a ∈ A is said to be in a double-spending situation if and only if ∃T, T ′ ∈ T , a ∈
IT ∪ IT ′ .

Furthermore, a′ ∈ A is said to be con�ictual if and only if ∃ a ∈ P (a′) ∪ {a′}
such that a is in a double-spending situation. Conversely, non-con�ictual accounts
are said to be con�ict-free.

By extension, T ∈ T ∗ is said to be con�ictual if and only if ∃ a ∈ IT such that
a is con�ictual. For each such a, we denote by T / a that T is con�ictual because of
account a.

Transactions T, T ′ ∈ T ∗ are said to be con�icting if and only if ∃ a∈A , T / a ∧
T ′ / a ∧ T 6∈ P (T ′) ∧ T ′ 6∈ P (T ). This is denoted T ./ T ′.

Finally, T ∈ T ∗ is said to be con�ict-free if and only if T is not con�ictual.

Informally, two transactions are said to be con�icting whenever they both use
the same coin without any of the two being a descendant of the other.

The special case of con�ictual coinbase transactions is handled in De�nition 10.
Note that a transaction may be con�ictual because of several distinct accounts: this
is a many-to-many relation.

De�nition 7 (Con�ict-free transaction according to Anceaume et al.)
Anceaume et al. [ALLS16] consider transaction T con�ict-free if and only if ∀a ∈
IT , a is not in a double-spending situation and ∀T ′∈P (T ), T ′ is con�ict-free.

Property 1 (Equivalent de�nitions of con�ict-free transactions)
De�nitions 6 and 7 are equivalent for con�ict-free non-coinbase transactions.

Proof. Let us �rst show that De�nition 6 is a su�cient condition for De�nition 7.
Let T ∈ T ∗ and let some a ∈ IT be con�ictual. Then either a is in a double-
spending situation and T is not con�ict-free as per De�nition 6, or ∃a0 ∈ P (a), a0
is in a double-spending situation. By the de�nition of P (a), ∃T0 ∈ T ∗ such that
a0 ∈ IT0 . Thus, T0 is not con�ict-free and neither is T , as per De�nition 6 hence
the partial result.

Similarly, De�nition 6 is a necessary condition for De�nition 7: let T ∈ T ∗ not be
con�ict-free as per De�nition 6. Then either ∃a ∈ IT in a double-spending situation
and thus a is con�ictual and T is not con�ict-free according to De�nition 7 either,
or we can �nd T ′ ∈ P (T ) such that ∃a′ ∈ IT ′ in a double-spending situation and
thus con�ictual. This makes use of the �niteness of P (T ). The result derives from
the fact that by de�nition of P (T ), ∃T ′′ ∈ T , T ′ ∈ P (T ′′)∪ {T ′′} ∧OT ′′ ∩ IT 6= ∅: all
the accounts from OT ′′ ∩ IT are con�ictual because T ′′ is con�ictual.

Now that every concept related to non-coinbase transactions has been de�ned,
blocks can be formally de�ned as well, in a similar way. Along with them, coinbase
transactions can be covered.

De�nition 8 (Blocks and blockchain)
We de�ne these elements as follows:
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1. A block b is an ordered set of transactions c(b), and is either a genesis block or
has a parent block p(b). Block b is called a successor of p(b). By convention,
p(b0) = b0 for a genesis block b0.

2. The blockchain B(b0) rooted by a genesis block b0 is the set {b block|∃k ∈
N, pk(b) = b0}, where pk(·) is the composition of p(·) with itself k times
(p0(·) = ·). The height of a block b in its blockchain is min{k|pk(b) = pk+1(b)},
i.e. its depth in the tree.

3. A minting scheme ρB(·) : N → R+ is a function mapping block heights in a
blockchain B to a positive amount of coins. By extension, for a block b of
height k, ρB(b) = ρB(k);

4. A weighing scheme ωB(·) is a function mapping blocks to real numbers in the
context of a blockchain B.

Though the de�nition of blockchain does not forbid the coexistence of several
di�erently-rooted blockchains, we enforce that all nodes from Π use the same genesis
block G0, as is the case in Bitcoin's main network whose root is the block 000000

000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f; thus, in the
following, we will simply denote B(G0) by B. The minting scheme is the function
de�ning the number of coins a miner can mint when she �nds a block: it corresponds
to Bitcoin's 50 bitcoins halved every 210 000 blocks. The weighting scheme combines
Bitcoin's PoW and di�culty, without actually restraining the model to PoW-only
mechanisms; it can assign a negative value when the proof is invalid (e.g. the block's
hash is above its target) and a value depending on the proof used such as the block's
di�culty for Bitcoin's PoW otherwise.

De�nition 9 (Well-formed coinbase transactions and blocks)
We de�ne the well-formed property for coinbase transactions and blocks as follows:

1. A coinbase transaction T0 is said well-formed if and only if all the following
conditions hold:

a) There exists a block b ∈ B such that T0 ∈ c(b);
b) ∀T ∈ T , ∀o ∈ OT0 ,∀o′ ∈ OT , o 6≡ o′;
c)
∑

o∈OT0
v(o) = ρB(b) +

∑
T∈c(b)\{T0} φT ;

2. A block b in a blockchain B is said well-formed if and only if all the following
conditions hold:

a) ∀T ∈ c(b), T is well-formed;

b) ∃!T0 ∈ c(b), |IT0 | = 0;

c) ωB(b) > 0;

d) No transaction appears more than once in c(b);
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e) b is either a genesis block or all the following conditions hold:

i. ∃!b′ ∈ B, b′ 6= b ∧ p(b) = b′;

ii. ∀T ∈ c(b),∀k ∈ N, T 6∈ c(pk(b));
iii. ∀T ∈ c(b),∀k ∈ N,@T ′∈ c(pk(b)), T ./ T ′;

We denote by B the set of all well-formed blocks that have been issued in the
system.

Informally, forks are to blocks what double-spending attacks are to transactions;
a fork consists in two blocks having the same parent just as a double-spending attack
consists in two transactions having the same input. Formally,

De�nition 10 (Con�icting blocks and coinbase transactions)
Blocks b, b′ ∈ B are said to be con�icting if and only if ∃k, k′ ∈ N, pk(b) = pk

′
(b′) ∧

∀κ, κ′ ∈ N, pκ(b) 6= b′ ∧ pκ′(b′) 6= b. This is denoted b ./ b′ as well.
A block is con�ictual if there is another one such that the pair is con�icting.

Otherwise, it is con�ict-free.
A coinbase transaction T0 is con�ictual if and only if its block b is con�ictual.

In that case, it is con�icting with the coinbase transaction T ′0 of any block b′ such
that b ./ b′ and any transaction T ′ such that T ′0 ∈ P (T ′).

The issue with this de�nition of con�ict for coinbase transactions is that as soon
as a fork arises, all subsequent blocks, and thus coinbase transactions, are con�ictual:
eventually, most accounts will become con�ictual. Indeed, transaction fees make
coins pass several times through coinbase transactions during their (in�nite) lifetime.
To prevent this, we need the ability to consider a fork resolved. Then, we will be
able to prune the losing branch out of the blockchain: all the blocks of the winning
branch will lose their con�ictual status unless they are also involved in a subsequent
fork.

De�nition 11 (Weighted pseudo-con�rmation level of a block)
Let b ∈ B . The weighted pseudo-con�rmation level of b, denoted W ′b, is the quantity

W ′b = max{
k∑
i=0

ω(bi)|∃k ∈ N,∃b0, ...bk ∈ B , b0 = b ∧ ∀i ∈ [[1, k]], p(bi) = bi−1}.

De�nition 12 (ζ-prunable blocks, ζ-linearised blockchains, ζ-resolved forks)
Let b ∈ B such that b is con�ictual. b is said ζ-prunable for some ζ ∈ R+ if and
only if ∃b′, b′′ ∈ B such that all of the following conditions hold:

1. b′ ∈ P (b) ∪ {b};

2. b′ and b′′ have the same height;

3. b′ ./ b′′;
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4. W ′b′′ −W ′b′ > ζ;

When that happens, b is said ζ-prunable because of (the branch of) b′′.
The ζ-linearisation of a blockchain B, denoted B(ζ), is the restriction of B to its

blocks that are not ζ-prunable.
A fork is said ζ-resolved when all its branches but one are ζ-prunable.

Informally, the pseudo-con�rmation level of a block corresponds to the total
weight of the heaviest branch it roots. As soon as a block becomes ζ-prunable, all
of its descendants get the same status: it su�ces to evaluate whether the two (or
more) blocks that initiated a fork are ζ-prunable to determine whether the entire
branch they each root is ζ-prunable. This notion is useful because a ζ-prunable
branch only has a negligible probability (in ζ) of ever catching up with the branch
with which it con�icts as long as the weight of a block su�ciently correlates with the
amount of e�ort its generation required. This is the case in Bitcoin with the weight
corresponding to the di�culty of the PoW. The gist of the proof is the same as that
used by Nakamoto to explain why one should wait 6 blocks before considering a
transaction as recorded in the blockchain [Nak08].

However, it is also very cumbersome to use because ζ must be adjusted corre-
spondingly with the weighing scheme and the evolution of the system. Indeed, for
Bitcoin's PoW, the target is regularly adjusted to account for the overall variations
in the computing power of the miners: this roughly represents a ten-fold increase
between late 2014 and November 2016 [BC.I]. Thus, a ζ corresponding to one hour
of work in November 2016 would have required ten times as much in late 2014,
which makes for a very slow con�ict resolution; on the other hand, one hour in 2014
corresponds to less work than a single block two years later, and the probability that
the losing branch catches up is not negligible any more.

For this reason, when the weight of well-formed blocks is piecewise constant for
ranges of heights in their blockchain, the following characterisation is easier to use.

De�nition 13 (Simpli�ed pseudo-con�rmation level of a block)
Let b ∈ B . The simpli�ed pseudo-con�rmation level of b, denoted L′b, is the quantity

L′b = max{k + 1|∃k ∈ N,∃b0, ...bk ∈ B , b0 = b ∧ ∀i ∈ [[1, k]], p(bi) = bi−1}.

By default, the pseudo-con�rmation level of a block refers to its simpli�ed de�-
nition.

De�nition 14 (z0-prunable blocks, z0-linearised blockchains, z0-resolved forks)
Let b ∈ B such that b is con�ictual. Block b is said z0-prunable for some z0 ∈ N if
and only if ∃b′, b′′ ∈ B such that all of the following conditions hold:

1. b′ ∈ P (b) ∪ {b};

2. b′ and b′′ have the same height;

3. b′ ./ b′′;
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4. L′b′′ − L′b′ > z0;

When that happens, b is said z0-prunable because of (the branch of) b′′.
The z0-linearisation of a blockchain B, denoted B(z0), is the restriction of B to

its blocks that are not z0-prunable.
A fork is said z0-resolved when all its branches but one are z0-prunable.

This second de�nition is much more usable in practice because weighting schemes
are typically adjusted for resource-consuming mining schemes to keep the pace at
which blocks are generated approximately constant. However, it becomes less safe
when a weight modi�cation (e.g. a target adjustement) happens during a fork be-
cause a branch can get the ability to produce more blocks with less work than its
competitors, hence the necessity to fall back to ζ-linearisation when that happens.

De�nition 15 ((z0, ζ)-linearised blockchains)
The (z0, ζ)-linearisation of a blockchain B rooted by a genesis block G0, denoted
B(z0,ζ), is a subset of B de�ned as follows:

1. G0 ∈ B(z0,ζ);

2. If b ∈ B(z0,ζ) ∧ ∃!b′ ∈ B, p(b′) = b then b′ ∈ B(z0,ζ);

3. Else, if ∃b ∈ B(z0,ζ),∃b′ ∈ B, ∀b′′ ∈ B such that p(b′) = p(b′′) = b, b′′ is z0-
prunable because of b′, and with k = max{i ∈ N|∃bi ∈ B, b′′ = pi(bi)} we have
that ∀i ∈ [[0, k]], ∀bi,0, bi,1 ∈ B, b′ = pi(bi,0) ∧ b′′ = pi(bi,1) ∧ ω(bi,0) = ω(bi,1)
then b′ ∈ B(z0,ζ);

4. Else, if ∃b ∈ B(z0,ζ),∃b′ ∈ B, ∀b′′ ∈ B such that p(b′) = p(b′′) = b, b′′ is
ζ-prunable because of b′ then b′ ∈ B(z0,ζ);

5. Else, ∀b′ ∈ B, p(b′) = b then b′ ∈ B(z0,ζ).

Informally, Item 2 accepts all blocks that do not introduce a fork in the linearised
blockchain; Item 3 performs the z-linearisation for branches where each pair of block
of the same height has the same weight; Item 4 performs the ζ-linearisation for
branches where the weight function gives di�erent values on di�erent branches for
the same height; �nally, Item 5 accepts both con�icting branches when none is
prunable.

As opposed to a blockchain B, none of the three restrictions de�ned above is
of monotonically increasing size: when a fork arises, all its con�icting branches are
included in the restrictions before being pruned out when they become prunable,
which resolves the fork. With very high probability (in z0 and/or ζ), a branch that
has been pruned out of a restriction cannot join it back, as long as the fraction of
computing power the adversary controls is su�ciently small. Both the upper bound
and the exact dependency are left for future work.

It is possible to de�ne ζ as a function of the state of the blockchain, e.g. to keep it
roughly equal to the amount of e�ective computing power used by the network over
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a �xed period of time; the only requirement it that any pair of con�icting blocks can
be compared to determine whether a su�cient amount of work has been dedicated
to extending the heaviest subchain rooted by one of them to ensure that the other
one will not be able to catch up. With infrequent target adjustments, most of the
forks will be handled by the z-linearisation scheme. To simplify the notations, we
denote by B∗ = B(z0,ζ) the linearisation of a blockchain B with (z0, ζ) considered
security parameters of the system.

We can use this linearisation to de�ne the con�rmation level of a block:

De�nition 16 (Con�rmation level and deep con�rmation of blocks and transac-
tions)
The con�rmation level Lb of some block b ∈ B∗ is de�ned as follows:

Lb = max({k + 1|∃k ∈ N,∃b0, ...bk ∈ B∗,
b0 = b and b0 con�ict-free

∧∀i ∈ [[1, k]], p(bi) = bi−1 and bi con�ict-free} ∪ {0}).

b is said to be deeply con�rmed if and only if Lb > z. Parameter z is called the
deep con�rmation threshold.

By extension, the con�rmation level of a transaction is equal to that of the block
containing it, or 0 if no such block exists. Similarly, a transaction is said to be
deeply con�rmed if and only if its con�rmation level is greater than or equal to z.

The deep con�rmation threshold z is also a security parameter, that should be
chosen greater than z0. Informally, once a block becomes deeply con�rmed, it cannot
be pruned out of the linearised blockchain by a malicious miner. Though it would
be an interesting property, the con�rmation level of a block is not monotonically
increasing: any miner can fork the blockchain so that some of its last blocks become
con�ictual, which decreases the con�rmation level of all the blocks. It may even
transiently cause a block to lose its deep con�rmation; however, in such a case, the
malicious branch would fail to win the fork and the previously deeply-con�rmed
blocks would get this status back.

The case where a transaction is included in several blocks does not lead to
it having several distinct con�rmation levels: in such a situation, the blocks are
necessarily con�icting (by de�nition of a well-formed block) and thus they all have
a con�rmation level of 0. This lets us solve the transaction con�icts as well: once a
transaction is deeply con�rmed, all those con�icting with it will with high probability
never be included in the blockchain: they can thus be erased from T along with all
those admitting them as ancestors and the corresponding accounts can as well be
erased from A .

An issue closely related to double-spending is the fast use of newly minted coins:
if someone were to use the output of the coinbase transaction of a very recent block,
there would be a chance for the block to be pruned, which leads to pruning the
coinbase transaction as well. Thus, it could be possible to use money that will
eventually never have existed. To prevent that from happening, the outputs of
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coinbase transactions are locked until the transaction that created them reaches a
con�rmation level of zcoinbase that should be chosen greater than z.

Since we consider a partially synchronous model, nodes may have di�erent local
views of the system.

De�nition 17 (Local view)
At any time, node p only has a local view Vp = Bp ∪ Pp of the system, comprising:

1. a local blockchain Bp, the restriction of the linearised blockchain B∗ (rooted by
G0) to the blocks that p has received. A transaction T is said to be in Bp if
and only if ∃b ∈ Bp, T ∈ c(b). By extension, it is also denoted T ∈ Bp;

2. a local mempool Pp, a pool of locally valid transactions that have not been
locally con�rmed yet.

This de�nition uses the notion of local validity [ALLS16]:

De�nition 18 (Local validity)
A node p considers a transaction T as locally valid if and only if the following
properties hold:

∀a ∈ IT ,∃T ′ ∈ Vp, a ∈ OT ′ (2.1)

∀T ′ ∈ Vp, IT ∩ IT ′ = ∅ (2.2)

Relation (2.1) is the existence property: the inputs of T must unlock outputs
that p has received. As we assume that all transactions are well-formed, it su�ces
for p to have received the transaction creating the output referred to by each input
for the input to correctly unlock it. Relation (2.2) is the availability property: the
inputs must not have already been spent. Anceaume et al. [ALLS16] include a third
relation: ∀a ∈ OT ,∀T ′ ∈ Vp, a /∈ OT ′ . It corresponds to the absence of account reuse.
However, assuming that there is no collision in transaction hashes, this property is
always veri�ed because each element of OT is referred to through the tuple (T, i)
where i is the index of the element in OT . Note that there have been collisions for
two pairs of coinbase transactions: the property is thus not as trivial as it may look
in practice, our model simply hides it in the well-formed characteristic.

Whenever a node receives a transaction that is not locally valid because it con-
�icts with a subset of the mempool, it can choose either to keep the previously
accepted subset or to replace it with the new transaction. Con�icting blocks are
handled similarly when the two resulting blockchains have the same total weight;
otherwise, the heaviest one is chosen by rational nodes as it is the most likely to
survive the eventual linearisation of the blockchain.

Finally, the last concept of our model is that of local con�rmation.

De�nition 19 (Local and deep con�rmation)
The local con�rmation level of a transaction T for a peer p is the con�rmation level
of T in Bp.
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T is said locally deeply con�rmed for a peer p when its local con�rmation level
is above z for p. For simplicity, T is said deeply con�rmed by p.

Bitcoin currently uses z = 6, zcoinbase = 100, and only the ζ-linearisation method
with ζ = 1, from assumptions made by Nakamoto [Nak08]. However, this is unsafe
because whenever a fork arises, all blockchain stores immediately choose to prune
out a branch; the probability that a previously pruned out block is reintegrated in
the blockchain is thus far from being negligible.

All these de�nitions lead to the following statement of the fundamental properties
of Bitcoin, adapted from our published work [ALLS16]:

Property 2 (Bitcoin's liveness)
A con�ict-free transaction will eventually be deeply con�rmed by a rational node.

Property 3 (Bitcoin's safety)
A con�ict-free transaction deeply con�rmed by some rational node will eventually be
deeply con�rmed by all rational nodes at the same height in the blockchain.

Property 4 (Bitcoin's validity)
Any transaction deeply con�rmed by some rational node is not con�icting with any
other transaction deeply con�rmed by the same node.

Property 3 ensures that rational nodes share a common pre�x for the blockchain.
The exact de�nition of �eventually� in terms of the deep con�rmation threshold z
and the communication delays is left for future work.

2.3 Known vulnerabilities

Despite the e�orts invested in mitigating them, Bitcoin is subject to vulnerabilities.
While some are inherent to peer-to-peer networks, others are more speci�c to the
blockchain technology or to the Bitcoin protocol. This section describes the most
most well-known of them. It does not mention attacks against the cryptographic
primitives, which are outside the scope of this document but should not be forgotten:
forging signatures and inverting hashes would be devastating to Bitcoin. However,
since the primitives used are well established, it is still reasonable as of this writing
to assume that they are not broken yet.

2.3.1 Double-spending attacks

A double-spending attack consists in sending two transactions with non-disjoint
sets of inputs and getting services or goods in exchange of both while only one
can be accepted in the blockchain (alternatively, one can also send two con�icting
transactions, get services for one and manage to have the other, sending funds back
to oneself, accepted in the blockchain).

The general idea is for David, who wants to buy services from Frank and Gina,
to sign a transaction T sending funds to Frank, collect his service and, before Gina
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receives T , to sign T ′ sending funds to her such that IT ∩ IT ′ 6= ∅ and collect her
service. Thus, only one of T, T ′ will be accepted in the network and all the accounts
in IT ∩ IT ′ will have been used by David to acquire two services at the price of
one. The reason why this attack does not apply to traditional currencies is that
they include, in their electronic version, a trusted third-party. If David were to
use a credit card to buy from Frank and Gina, both of them would quickly get a
con�rmation from e.g. Visa that the payment was valid. Without this centralised
source of trust, no one can ensure them that they will get their due.

This attack is the reason why nodes should not consider non-deeply con�rmed
transactions de�nitely recorded in the ledger: transactions in blocks have prece-
dence over those in the mempool and blocks may occasionally be pruned out of the
blockchain. The validity property ensures that no two con�icting transactions are
deeply con�rmed by a single rational node but does not prevent an attacker from
getting two di�erent rational nodes to locally deeply con�rm two con�icting trans-
actions by hiding the presence of a fork to them. The prunability parameters and
deep con�rmation threshold must be chosen so as to limit the feasibility of such an
attack, which is possible because nodes only have a limited view of the blockchain
and compute con�rmation levels based on this partial information.

2.3.2 Forks

Forks arise naturally because of the asynchrony of the network: the chance that a
miner �nds a block while another one with the same parent is propagating through
the network depends on the time it takes for a block to propagate to the whole
network. For example, assuming that a block is propagated simultaneously to all
miners one second after it has been found, there is a probability p ≈ 1/600 that a
con�ict arises (assuming a geometric distribution with a mean of 10 minutes for the
mining process). This follows a geometric distribution and, in this oversimpli�ed
model, a non-malicious fork arises every 600 blocks (approximately 4 days and 4
hours) on average.

They are harmful to the system because they cause inconsistencies in the local
views of the system state. Indeed, the sets of UTxOs will necessarily be di�erent
because the respective coinbase transactions create di�erent outputs. Forks are
eventually resolved because each rational store considers the heaviest chain it knows
(the one with the highest cumulative di�culty) to be the valid one and, eventually,
all rational miners end up working on the same branch, assuming a reasonable upper-
bound on the communication delays (the lower the bound, the quicker the resolution
in terms of blocks).

However, forks may also be malicious: a Byzantine miner can deliberately work
on a forked branch. The most obvious bene�t is that she will get the block reward
of each block she �nds in her branch if it wins the fork, but another one is that she
can use the fork to perform double-spending attacks. Indeed, if Carol manages to
fork the network between branches A and B, and to insert a transaction to Alice's
wallet in A and a con�icting one sending the same coins to Bob's wallet in B, and
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to have Alice accept A and Bob B (which can happen as long as the two branches
have the same weight), she can have them both send her their goods before the fork
is resolved.

From this derives the notion of e�ective network computing power, the computing
power dedicated to extending the heaviest branch of the network, decreased by
forks and propagation delays (e.g. using the same model as before but with a 3 s
propagation time, an average of approximately 3/600 = 0.5 % of the total computing
power is lost in propagation delays) [DW13].

Forks are handled by Bitcoin's liveness and safety properties as con�ict-free
transactions can be included in all con�icting branches.

2.3.3 Network split

Splitting the network consists in dividing the network in two or more graphs that
are not connected to each other. Should that happen, the blockchains of each graph
would diverge and the usual mechanism to resolve forks would not work. At the
end of the attack, when the graphs manage to recreate interconnections, the graph
which was the most successful in generating blocks would impose its view of the
network. The main point of this attack is that the fork will last for at least as long
as the split: it creates a malicious fork without consuming computing power.

The connection management implemented by Core is quite complex in order to
protect the network against such attacks. First, each router establishes outbound
connections, which means that an attacker would need to �ll up his address manager
with malicious entries2 to prevent it from creating links crossing the split. Given
the structure of the address manager, described in Appendix C.2, this is quite hard
to establish. Then, the attacker would need to disrupt the connections crossing the
split: this either requires controlling the network between each pair of neighbours
to drop all the exchanged messages and force connection time outs, or �lling up
each router's set of neighbours and managing to evict those that are on the other
side of the attempted split. Once again, given the randomized approach to evicting
neighbours, described in Appendix C.1, this seems impractical.

All in all, though potentially devastating, network splitting attacks do not seem
more feasible through the Bitcoin protocol than general large-scale attacks on the
Internet or, at least, maintainable for a su�ciently long time to mount other attacks.

2.3.4 51% attack

The 51 % attack relates to the fact that an attacker controlling more than half of the
total computing power in the network would be all-powerful. Without checkpoints
on the blockchain, it could go back to the genesis block, fork the blockchain and
still produce a chain longer than that mined by all the other miners, thus rewriting
the entire history of the system. Any transaction could become con�ictual as they
all rely at least on the coinbase transactions that generated their input coins, which

2This is called a Sybil attack: an attacker needs to create a large number of valid identities.
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could all belong to con�icting blocks depending on which pre�x of the blockchain
the attacker preserves.

Thus, this attack does not properly �t in our model as it con�icts with the
hypothesis that coinbase transactions only become accepted in the system after a
period of time such that no attacker could revert them, which is precisely what the
51 % attack does. It su�ces to control slightly more than half of the e�ective com-
puting power to perform this attack: similarly to forks, any technique decreasing the
e�ective computing power (such as disrupting communications or targeting miners
with DoS attacks) facilitates it.

There is currently no speci�ed automated protection against 51 % attacks. How-
ever, there are still two reasons why they are not performed, or not enough to be
noticed. First, since February 3rd, 2016, the computing power measured by Block-
chain.info [BC.I] has never dropped below 1018 hash per second. This is a consider-
able amount, and controlling half of that is not an easy task. Then, performing this
attack in too obvious a manner would probably not be pro�table: it would surely
lead to a hard fork, where the honest community would just separate from the cor-
rupted network; to a drop of the price of bitcoins; to a complete abandonment of
the system; or to a combination of these scenarios. This explains why our model
does not take it into account: the fact that the system as a whole would be doomed
if it happened combined with its impracticality in large enough networks make it a
very speci�c issue.

2.3.5 Malicious mining

Byzantine peers can deviate from all parts of the protocol, and not only the ones
related to communications. As such, there are ways for them to mine maliciously in
order to increase their expected pro�ts. Two such ways are SPV mining [BW.MP]
and sel�sh mining.

SPV mining consists in mining on top of blocks that have not been locally val-
idated; its name derives from the Simpli�ed Payment Veri�cation (SPV) mode of
operation in which resource-constrained nodes do not receive or verify the full block-
chain. Its simplest form is for miners to accept block b as the parent of the block
b′ that they are trying to build as soon as b is received, without taking the time to
validate it �rst (and possibly to even check whether it is well-formed). This only
has a low impact, as validating a block takes less than a second. However, a more
elaborate form consists in listening to other sources, such as the web APIs of the
biggest pools to get the hash of newly found blocks even before they propagate in
the network; this can lead to a few seconds of SPV mining. The main reason it is
considered an attack on the network is that it is unfair to the miners doing what
they are supposed to be rewarded for, creating a clean ledger. On the other hand, it
is risky because any block built on top of an invalid one is invalid as well. Finally, it
has the positive side-e�ect of decreasing the probability of forks because it decreases
the time spent on involuntarily trying to fork the blockchain.
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Sel�sh mining [ES14a] is a more elaborate adversarial behaviour. It consists, for
Alice, in keeping the blocks she �nds to herself for as long as possible before releasing
them in the network. Thus, she can be the only one mining on top of them for a long
period of time, increasing her relative computing power. This attack fails if i) she
keeps her blocks for too long, ii) a fork occurs, and iii) the other branch wins. If she
has a broadcasting advantage (for example, by being connected to strategic points
of the network), she can decrease this failure probability and keep her blocks secret
even longer. Speci�cally, the use of parallel networks helping miners propagate their
blocks (e.g. the Fast Relay Network [Cor16]) can help Alice win forks with great
probability when the other miner(s) involved does not use them. As opposed to
SPV mining, this truly is an attack in that it makes rational miners work on blocks
that already have successors; thus, it bears some resemblance with communication
disruption attacks.

However, none of these attacks a�ect Bitcoin's properties: they increase the
likelihood that a block is found by a Byzantine miner but con�ict-free transactions
are relatively una�ected, except for the fact that it may have an impact on the time
needed for them to get deeply con�rmed.



Chapter 3

Bitcoin today

Since its inception in 2008, Bitcoin has changed in several meaningful ways, while
keeping some of its core parts intact. Thus, the market price of coins has drastically
increased [Caf16], but transactions and blocks remain mostly unchanged. In this
chapter, we present a survey of selected papers relevant to our study, and we describe
and analyse the results of an experiment that we performed to evaluate the state of
today's Bitcoin network.

3.1 Survey of selected academic papers

Bitcoin, its blockchain structure and its decentralized model have generated a lot
of interest from the scienti�c community. Given the number of papers published
in the �eld over the past few years, this survey only focuses on topics this the-
sis deals with. Examples of topics that are not covered include privacy (of users
and peers [BKP14; GCKG14]), many altcoins [ANV13], and evaluations of Bit-
coin's decentralisation [GKCC14] or �nancial and regulatory rami�cations [DF14]
This survey groups papers based on the subparts of the global system they tackle:
�rst, application-agnostic models for the blockchain are presented; then come papers
presenting the results of large-scale measures performed on the Bitcoin network, fol-
lowed successively by the topics of information propagation, malicious mining and
double-spending attacks. Finally, we conclude this survey with papers focusing on
bigger revisions of the Bitcoin protocol.

Table 3.1: Summary of the papers described in Section 3.1.

Paper Year Model Feasibility

The Bitcoin Backbone
Protocol: Analy-
sis and Applica-
tions [GKL15]

2015 Fixed synchronous net-
work with an adaptive
and rushing adversary.

Application-agnostic
but strong assump-
tions.

27
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Table 3.1: (continued)

Paper Year Model Feasibility

Analysis of the Block-
chain Protocol in
Asynchronous Net-
works [PSS16]

2016 Partially synchronous,
dynamic, and adversar-
ial network.

Application-agnostic;
only studies malicious
mining.

Information Propaga-
tion in the Bitcoin
Network [DW13]

2013 Random graph, uni-
form computing power.

Partial results, may
simplify DoS attacks.

Discovering Bit-
coin's public topol-
ogy and in�uential
nodes [MLPG+15]

2015 Peers follow Core's
undocumented man-
agement of address
time stamps.

Relies on undoc-
umented and/or
patched behaviour.

On Bitcoin and Red
Balloons [BDOZ11]

2012 Full propagation before
mining. Forest of trees.

No implementation,
double-spending
vulnerability.

Tampering with the
Delivery of Blocks and
Transactions in Bit-
coin [GRKC15]

2015 Reasonable adversarial
networking and com-
puting capabilities.

Already partially im-
plemented.

Bitcoin: a peer-to-
peer electronic cash
system [Nak08]

2008 Implicit synchrony and
very weak adversary
model.

Founding paper with
overly generalised con-
clusions.

Majority Is Not
Enough: Bitcoin
Mining Is Vulnera-
ble [ES14a]

2014 Synchrony and absence
of accidental forks.

The situation is even
worse with more real-
istic assumptions.

Double-Spending
Fast Payments in
Bitcoin [KAC12]

2012 Non-mining adversary. Based on Core v0.5.2:
paying to IP addresses
is no longer supported.

Have a Snack,
Pay with Bit-
coins [BDEWW13]

2013 Non-mining adversary,
modi�ed behaviour for
the victim's router.

May harm the network
if deployed at large
scale.

Safety Analysis of
Bitcoin Improvement
Proposals [ALLS16]

2016 Partially synchronous,
dynamic, and adversar-
ial network.

(Not applicable)

Secure High-Rate
Transaction Process-
ing in Bitcoin [SZ15]

2015 Very few restrictions on
the graph, weak adver-
sary model.

Adapted for
Ethereum [But14]
but wasteful.

Cryptocurrencies
without Proof of
Work [BGM14]

2014 Stakes are distributed
enough.

Preliminary design
with interesting prop-
erties.
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3.1.1 Blockchain models

This section groups papers providing models to study the properties of blockchains
in an application-agnostic setting. To the best of our knowledge, there is no other
prominent paper in the �eld as of this writing.

3.1.1.1 Blockchains in synchronous networks

In the Bitcoin Backbone Protocol: Analysis and Applications [GKL15], the authors
present a formal model to study blockchain protocols in synchronous networks. They
de�ne the two properties of common pre�x and chain quality, and use them to
study di�erent blockchain-based applications for e.g. solving Byzantine agreement
problems.

The model assumes a network without churn that follows a protocol in rounds.
At each round, each node can try the same number of nonces in the mining process
and all messages are sent and received. The adversary can choose which nodes
to corrupt, the only limits to the corruption being that she can only control an
upper-bounded fraction of the nodes and they remain computationally bounded.
Corrupted nodes can, however, receive all the messages sent in a round before any
other node, de�ne their behaviour for the round in consequence, and get all honest
nodes to receive their messages before those originating from other honest nodes.
They cannot tamper with the content or the delivery of an honest message but they
can choose to send di�erent messages to di�erent nodes.

In this scenario, they show that with high probability, all honest nodes share
the same pre�x of the blockchain (common pre�x property) and the blocks found
by the adversary represent a limited fraction of the total number of blocks in the
blockchains (chain quality property).

They use these two properties to build two protocols that solve binary Byzan-
tine agreement, a problem that combines the four usual properties of consensus
(termination, validity, integrity, agreement) in two that they call validity (covering
termination as well) and agreement (including integrity). These Byzantine agree-
ment protocols use the common pre�x property to ensure agreement and the chain
quality one for validity. They also implicitly use the lower bound on the growth
rate of blockchains described in [PSS16] (analysed in Section 3.1.1.2) to ensure ter-
mination. The second protocol is more complex than the �rst one in order to be
robust against an adversary controlling half of the nodes, whereas the �rst one only
tolerates a third of Byzantine nodes.

The authors de�ne PoWs in an unusual way. First, they call di�culty Bitcoin's
target, when Bitcoin's di�culty is actually inversely proportional to the target.
Thus, increasing their di�culty makes it simpler to �nd blocks, which we deem
needlessly confusing. Then, their explanation of how blocks are hashed is wrong.
According to them, the hash of a block b isH(ν,G(s, c(b))) where ν is a nonce, s is the
hash of p(b) and H and G both correspond to SHA-256. In reality, G should return
the concatenation of s and of the Merkle root of c(b), and H should be SHA-256d.
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This does not impact the validity of the analysis but we point it out as an example of
the need for a clear, common and correct framework for academic studies of Bitcoin
and, more generally, blockchain-based systems and protocols. On the other hand,
the synchrony assumption impacts the usability of the model, especially over the
global Internet.

3.1.1.2 Blockchains in partially synchronous networks

In Analysis of the Blockchain Protocol in Asynchronous Networks [PSS16], the au-
thors present a formal model to study blockchain protocols, this time in partially
synchronous networks. They prove upper and lower bounds on the growth rate of
blockchains, a stronger property of consistency than that of Nakamoto [Nak08], and
rede�ne chain quality with a formal de�nition of adversarial blocks.

The model assumes partial synchrony [DLS88] in a network made of a set of
nodes whose composition may change with time: the adversary can choose which
nodes to corrupt, limited only by an upper bound on the fraction of corrupted
nodes in the network, and nodes may join and leave the network. Furthermore,
nodes have identical computing powers; however, the adversary can coordinate the
computations of the nodes she controls. The computing model is that nodes can
query the random oracle to mine only once per time step but can make as many
veri�cation queries as they want. This seems a quite fragile assumption, as nodes
could use the veri�cation queries to actually mine by verifying, for a given message,
whether its hash is equal to any value below the target in as many queries, thus
virtually increasing their computing power.

The main di�erence between this model and ours is that it is application-agnostic:
it focuses on the construction of the blockchain rather than what the application
records in it. Thus, while our focus is on double-spending attacks, that are facilitated
by attacks on the underlying protocols, theirs is speci�cally on malicious mining and
its consequences on the composition of the blockchain.

3.1.2 Measures of the network

This section groups papers presenting the results of large scale measures on the
Bitcoin network. They are complemented by trackers such as Blockchain.info [BC.I]
and Blocktrail [BT], as well as projects such as Bitnodes [BN].

3.1.2.1 Measuring and improving information propagation

In Information Propagation in the Bitcoin Network [DW13], the authors describe the
results of several measures performed on the Bitcoin network and possible protocol
improvements. The main concern is the propagation of both blocks and transactions.
Since transactions need to be propagated in order to reach miners and be con�rmed,
and blocks to keep the local blockchain replicas consistent, this is a matter of safety
and liveness for Bitcoin.
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The measures used a single router trying to establish 4000 outbound connec-
tions1. It stored every single block advertisement it received from the network, and
assumed the �rst inv message announcing each block to correspond to the injection
of the block in the network. The measure covered blocks 180 000 to 190 000, time
stamped respectively on May 13th, 2012 at 18:21:11 UTC and July 20th, 2012 at
22:53:36 UTC. The router did not propagate information during the measure to
avoid in�uencing the result.

The results were as follows: the median propagation time of a block was 6.5 s,
the mean was 12.6 s, and the estimated probability density function (PDF) could be
�tted by that of an exponential law with parameter 0.1072.

The authors also measured the rate of forks and report a �gure of 1.69 %. Using
the assumptions that computing power is uniformly distributed in the network, that
their measurements correctly represent block propagation in the network, and that
the random skews in block time stamps are averaged out over their 10 000 blocks,
they present a simple model for the occurrence of forks: they happen when a miner
�nds a block before receiving the current best. From that, they deduce that 1.80 %
of the network's computing power is wasted because of propagation delays: the
infamous 51 % attack would only need 49.1 % of the computing power to succeed.

This corresponds to the phenomenon called the Blockchain Anomaly [NG16] an
attacker able to use networking power to slow down information propagation can
lower the computing power needed to rewrite an arbitrary length of the blockchain.

Then, the paper describes a few ways the protocol could be improved to reduce
the propagation delays. First, transaction could be directly advertised, without
going through the 3-way handshake as it represents the main part of the propagation
time for small messages such as transactions. This method could potentially work
without creating any vulnerability, but it would increase Bitcoin's network resource
consumption as any router with 8 neighbours would require the transaction to be
sent at least 8 times, distributed between to and from him depending on the relative
reception times of the transaction in his neighbourhood, compared to possibly only
once and 8 inventory (whose size is signi�cantly smaller than that of transactions
since it is strictly smaller than each input): determining whether the trade o� is
acceptable is not trivial despite the fact that it could improve Bitcoin's liveness by
reducing the time between the emission of a transaction and the instant at which
miners start con�rming it.

Then, the propagation of blocks could be improved in two ways by routers: �rst,
each router could propagate blocks as soon as they pass the context-independent va-
lidity checks (see Appendix A.4.4) rather than waiting for them to pass the complete
validity check; then, routers could relay block advertisements as soon as they receive
one. Since the most di�cult part in �nding a block is completing the PoW, whose
veri�cation is included in the context-independent validity checks, the former would

1The �gure is not mentioned in the description of this �rst experiment, we assume it to be
equal to that of the second one.

2This value, not included in the paper, was provided by the �rst author by e-mail.
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not expose routers to DoS attacks; malicious peers aiming at maximising the e�ect of
their misbehaviour would use their computing power to �nd valid blocks rather than
invalid ones. Adapting the peers' source code to include that modi�cation would
not be di�cult. Moreover, since SPV mining is used by several pool [BW.MP], one
could argue that it would improve the current situation. This would indeed improve
the delays in the network, but at the cost of an increased resource consumption.

The second proposal can be analysed the same way except that it provides a
vector for DoS attacks. Indeed, advertisements would �ood the network and they
are free. Though well-formed transactions require more work from the receiver to
perform the validity check, nodes drop transactions whose fee is insu�cient to get
con�rmed instead of propagating them.

Finally, a third solution is examined: using highly connected routers to dras-
tically reduce the diameter of the underlying graph. Though e�cient, this is not
feasible in the long run: the infrastructure required to handle the bursty network
load is expensive and threatens Bitcoin's decentralisation.

The third aspect of the paper describes the eclipse phenomenon: to avoid con-
suming network resources, routers do not propagate what they consider invalid infor-
mation: locally invalid or non-standard transactions (e.g. double-spending attempts)
and concurrent blocks during forks. Whenever a peer detects a con�ict, it picks a
side and considers the other one non-existent until proven wrong. This saves network
resources and prevents some �ooding attacks: no attacker can perform a DoS attack
at the network scale by propagating several transactions consuming the same input
and paying only once the fee. On the other hand, it helps perform double-spending
attacks since only the routers neighbouring the cut between the two subgraphs de-
�ned by which of the two versions of the con�ict is accepted actually know that
the cut exists. In most common scenarios, propagating everything independently of
its contextual validity (e.g. both concurrent blocks during a fork) as long as it is
context-independently valid would alleviate this issue, and vendors could make sure
not to provide their goods in exchange of a transaction that is not deeply con�rmed.
However, this would not provide any protection in case of a network split, quite the
opposite: it would give a false feeling of safety.

All in all, this paper provides an insight in what the Bitcoin network was in 2012.
Since then, the protocol has slightly evolved, with among other a modi�cation in the
advertisement of blocks. It highlights ways to improve Bitcoin's �ooding mechanism
but most of them tend to expose the network to �ooding attacks or, at least, to make
them easier to perform and more e�cient: it improves Bitcoin's liveness and safety
properties when all peers behave properly but may harm them in the presence of
malicious ones.

3.1.2.2 Bitcoin's network topology

In Discovering Bitcoin's public topology and in�uential nodes [MLPG+15], the au-
thors present the results of two related experiments they performed on the Bitcoin
network through the infrastructure they call CoinScope. First, they map the struc-



CHAPTER 3. BITCOIN TODAY 33

ture of the network's graph; then, they search for the routers that were communi-
cating with the highest shares of the e�ective computing power.

Mapping Bitcoin's graph relies heavily on the address propagation mechanism
described in Appendix C.2. In short, a router can ask its neighbours for a list of ad-
dresses through getaddr messages. The neighbours answer with addr messages by
sampling a limited subset of their address database. CoinScope then infers whether
a connection is established between two routers depending on the time stamps as-
sociated with each address.

With this process, between 4000 and 7000 routers were probed over 18 days.
The results show that most reachable routers had between 8 and 12 neighbours,
some having up to slightly less than 1000. Most of these outliers are identi�ed as
belonging to mining pools (mostly the Bitcoin A�liate Network [BAF]) or wallet
services. The authors conclude that the Bitcoin graph signi�cantly di�ers from a
truly random one.

This �rst experiment requires a few comments. First, the number of reachable
routers is signi�cantly higher than that measured by Decker et al. [DW13] (analysed
in Section 3.1.2.1), with a mean in the order of 5000 routers instead of 3048. The
former is consistent with the usual estimations provided by Bitnodes [BN] while
the experiment we describe in Section 3.2 is closer to the latter. We brie�y discuss
possible origins of this discrepancy in Section 3.2.3. Second, the Bitcoin A�liate
Network, which was linked to 29 % of the highest degree routers in the snapshot
shown in the paper, has since then disappeared from the Bitcoin horizon: Block-
trail [BT] reports that the last block they found was on Wednesday, December 2nd,
2015, at 4:24:42 GMT.

However, the main issue resides in their comparison with a truly random graph:
they provide no formal de�nition of such a concept. Indeed, there are many di�erent
models for random graphs [BR05; BA99; ER60; Gil59] which exhibit signi�cantly
di�erent features. The closest model to what we expect from the Bitcoin graph is
the undirected growing 8-out [BR05] one, where each vertex successively joins the
network and connects to 8 vertices. However, this does not take into account the
very well connected vertices that they have found, and the claim that their in�uence
is minimal is dubious: if 50 vertices have an average degree of 200 in a network
also comprising 5000 vertices of degree 8, then those 50 well-connected vertices hold
20 % of the graph's edges. Though the �gures provided in this toy example are
arbitrary, they comply with the data provided of 48 nodes with degree ranging from
90 to 708; thus, they should either be part of the argument against the graph's true
randomness (which still lacks a formal de�nition) or be taken into account in the
random graph model.

Another potentially important pitfall of their approach is their assumption that
most nodes use the same unintuitive time stamp scheme as Core for addresses (see
Appendix C.2). Given that it depends on mostly undocumented behaviour, it seems
reasonable to assume that some clients handle it di�erently. Additionally, Core
v0.13.0 only tolerates one getaddr request per inbound connection, which makes
the experiment much more complex to perform.
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The second experiment, �nding the in�uential routers, rely on sending di�erent
transactions all consuming the same inputs to di�erent parts of the network, and
identifying which of those get included in the blockchain. Indeed, under a uniformly
distributed computing power assumption, for each set of con�icting transactions, the
winner is chosen uniformly at random. The actual distribution of winning transac-
tions based on where they have been sent can provide an insight as to the actual
distribution of the computing power in the network.

The results of this experiment are that less than 2 % of the routers were strongly
linked with almost 75 % of the total computing power of the network, and many of
those routers are associable with speci�c mining pools or, at least, Bitcoin addresses
to which their coinbase transactions send their output.

Once again, the churn in mining pools is highlighted by the presence of GHash.io
among the ranks of the most powerful pools at the time; it has since then greatly
fallen behind and has been associated with barely 9 blocks between heights 429 000
and 430 000 (0.9 %) [BT]. However, this experiment relies on a bug described by
Gervais et al. [GRKC15] (analysed in Section 3.1.3.2) that Core v0.12.1 �xed.

This experiment shows that the assumption of uniformly distributed computing
power is unrealistic. However, given that those routers do not seem to have any
other distinctive feature, one could argue that dynamic graph models can still use
the assumption and consider that it represents the probability that the in�uential
nodes are at a given location at a given time rather than that each node has the
same amount of computing power.

3.1.3 Information propagation

This section describes two papers focusing on Bitcoin's �ooding protocol, pointing
out its �aws and possible solutions. Given the lack of formal speci�cation, most
papers focus on bigger overall modi�cations of Bitcoin to improve its characteristics;
Section 3.1.6 describes some of them.

3.1.3.1 Incentive for information propagation

In On Bitcoin and Red Balloons [BDOZ11], the authors describe a possible incentive
for information propagation, to account for the fact that it consumes resources to
broadcast transactions at no gain for any router that is not concerned by it. It is
even quite the opposite: if miners have more uncon�rmed transactions than they
can include in a single block, they can choose the ones with the highest fees to
maximise their own pro�t, which leads to a competition between wallets to �nd
the lowest transaction fee that will get their transaction con�rmed at the minimal
cost for them. In this scenario, not propagating competing transactions is a way to
increase one's chances to get one's transactions con�rmed.

One way to �x this issue is to make it interesting for routers to propagate all
transactions. Just as miners are rewarded for each block they �nd, routers would be
rewarded for each transaction they help propagating to the miner that eventually
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manages to con�rm them. Because of the openness of the Bitcoin network, the
authors claim that their scheme is Sybil-proof: it is not bene�cial to generate a
large number of identities not backed by actual networking resources.

The proposition is that whenever a router relays a transaction, it can add its
identity to a chain of signatures included in the transaction. The chain has a limited
height and, when the transaction is con�rmed in a block, the system rewards all the
accounts that signed it. The height and the reward are parameters of the scheme;
the actual scheme uses two sets of parameters in parallel and the authors show that,
in their model, it is more pro�table for routers not to duplicate themselves in the
signature chain because it increases their chances of seeing the transactions they
propagate included in a block.

This could improve the propagation time of transactions in the network and,
thus, help detect double-spending attempts. However, it su�ers from several draw-
backs. First, its model is quite peculiar: instead of the usual random (or regular)
graph, it is based on a forest of complete d-ary trees. It also considers that the
protocol is divided in two phases: �rst, all nodes propagate as many transactions as
they want to all their neighbours and then all nodes mine until one �nds a block.
Finally, the computing power is uniformly distributed among the peers, which are
all nodes.

The authors provide experimental validation neither for their model nor for their
scheme; they claim that rumour spreading is harder in a tree than in a graph as
each node has total control over the data �ow to its children. However, combining
this structure with the assumption of uniformly distributed computing power gives
theoretical results of possibly limited applicability: this may instead lead to a com-
petition to get as close as possible to the in�uential nodes discovered by Miller et
al. [MLPG+15]. The e�ect of this reorganisation on the resilience of the network
would need additional investigation. Assuming that miners start to try and con�rm
transactions after all miners have received them is reasonable in that transactions
propagate quickly compared to the time needed to �nd a block.

Another adverse e�ect of this solution is shared by most incentive schemes: if
incentives are distributed for a given action, it can be expected that said action
will not be performed without retribution any more. Thus, routers receiving a
transaction after the signature chain has reached capacity will probably not even try
to propagate it: the capacity of the signature chain must be chosen accordingly. This
can also be leveraged to increase the success probability of a double-spending attack:
Alice can establish a direct connection to Bob, the node controlled by a vendor Frank
selling her user Gina some goods3, without Bob knowing the association between
Alice and Gina. Then, sending Bob the transaction with a signature chain already
almost at capacity lets Frank believe that it is propagating; Alice can in parallel
broadcast a con�icting transaction with an empty signature chain. To Gina, in the
worst case scenario, the legitimate transaction gets con�rmed (e.g. Bob successfully

3Many IPv4 addresses can be associated with geographical addresses with a su�ciently good
precision for this not to seem unrealistic.
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mines it) and she still gets most of the propagation incentive back; more likely, the
illegitimate transaction is successful, along with the attack. In short, the Sybil-
proofness of the scheme only applies to intermediate routers propagating a valid
transaction and leaves out some potentially harmful cases.

Finally, there are two more issues from the implementation point of view. First,
it requires the emitter of each transaction to have at least 15 neighbours, while
the current lower limit for the Core is 8: this number would need to be raised.
According to Miller et al. [MLPG+15], though, this may not be an issue if most
routers currently only have a tenth of their maximum number of connections. On
the other hand, how the chain of signatures should be implemented is unclear. The
authors suggest replicating the �eld, in a transaction's body, used to give the fee
to the miner con�rming the transaction. As shown by Appendix A.3, there is no
such �eld. A supplementary output, with the right scriptPubKey, could be still be
a possible idea. However, there are many issues to solve:

1. To preserve privacy, it should be di�cult to associate a router with the wallet
of its controlling user. A signature chain would make each router advertise a
public key in the chain that the wallet would then use, associating the two;

2. the signature chain cannot be covered by the emitter's signature and would
need to enforce its own tamper-proofness; though S-BGP [KLS00] manages
something similar to what would be needed here, its approach is probably
not scalable enough and regular routers could not process a large number of
transactions per second, which would decrease Bitcoin's throughput;

3. claiming the funds would be tricky as well: currently, each output can only
be claimed once. Here, the protocol would either require from each block to
include several coinbase-like transactions rewarding the appropriate routers
(along with the associated validity checks performed by each node) or from
that special output to be claimable once by each signature in its chain.

In conclusion, though based on a good idea, the authors of [BDOZ11] do not
solve the issue they tackle because of both theoretical and implementation-related
unsolved problems. Their proposal has no e�ect on Bitcoin's safety because it re-
stricts itself to the di�usion of loose transactions in the network, and because of
its drawbacks its e�ect on Bitcoin's liveness can only be negative: non-con�ictual
transactions might not reach a single miner if the incentive to propagate it is not
large enough and nodes, rationally deciding to only propagate rewarding transac-
tions, could drop it. If those issues were to be �xed, it could potentially improve
Bitcoin's liveness by decreasing the delay between the emission of a transaction and
its reception by the miner that will succeed in con�rming it. For this e�ect to be
signi�cant would however require that the propagation delay of a transaction be
non-negligible compared to the time needed to �nd a block, which goes against one
of the assumptions of the model, or that a signi�cant portion of transactions that
should be propagated be dropped without this incentive.
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3.1.3.2 Tampering with information propagation

In Tampering with the Delivery of Blocks and Transactions in Bitcoin [GRKC15],
the authors focus on a special kind of DoS attack to which the Bitcoin protocol is
vulnerable, and how it can be used to increase one's mining revenue and chances of
success for double-spending attacks. The vulnerable mechanism is the 3-way data
exchange and its time-out detection.

Indeed, as the authors point out, when Bob requests a transaction from Alice
in response to her advertisement, he waits for 2 minutes before requesting it from
another neighbour; thus, Alice can easily withhold the item for that long. However,
cascading this attack by sending several advertisements for the withheld transaction
does not work any more since pull request 7079, by Gregory Maxwell, was merged
into the source code of the reference client [Core]: Bob now �lters the queue he uses
to know which neighbour to ask for a given transaction so that a single router can
only appear once per transaction. This would make the double-spending detection
prevention attack, consisting in withholding the illegitimate transaction from Bob
until it gets con�rmed, unusable as he would learn about it right after the time out
unless Alice managed to perform the attack from several routers in Bob's neigh-
bourhood. However, since Core routers only propagates one transaction in case of
con�ict, con�ict detection is already a di�cult task without this attack. According
to Bitnodes [BN], on Wednesday, August 31st, 2016 at 19:03:21 GMT, Bitcoin XT, a
client that propagates all transactions involved in a con�ict to let other nodes detect
the con�ict, was run by less than 100 nodes (less than 2 % of the 5272 nodes seen
in the network by the tracker at that time).

The paper is also slightly outdated as regards block propagation for the same
reason: some of the solutions it recommends have been implemented. The attack
is quite similar: to prevent Carol from receiving a block, Bob can send her the
corresponding advertisement and not follow up with the actual block. Since nodes
do not register block advertisements for blocks they are waiting to receive, if Bob
manages to be the �rst to send the advertisement, there is a high chance that all of
Carol's other neighbours will advertise the block before Bob's transmission (or lack
thereof) times out and Carol will need to wait for the next block to be propagated
(or another neighbour to connect to her) to be able to receive the missed block.
Thus, the attack is even more powerful for blocks than for transactions.

However, the situation has changed in two ways. First, Core v0.12.1 uses a time
out for block reception of 10 minutes plus 5 per other neighbour sending a block
whose header has already been validated instead of the previous 20 minutes. In a
regular setting, where nodes need only download one block at a time, that amounts
to half of the previous value and Carol would disconnect from Bob as soon as the
transmission times out, not allowing him to perform it several times in a row without
using several colluding routers. Then, the whole mechanism for propagating blocks
has changed: the �rst message of the three-way handshake contains the header of the
block instead of a simple advertisement. This way, nodes can only request blocks
that seem valid, and Bob would need to completely eclipse Carol from all of her
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honest neighbours to prevent her from receiving the block; among others, he would
need to get her to make all of her 8 outbound connections to routers colluding with
him.

Given these protocol updates, the attacks reported by the paper are much more
di�cult to perform, and thus the mining and double-spending advantages are re-
duced though not completely voided. The mining advantage is even more reduced
by SPV mining when performed by getting block hashes directly from other pools'
websites, even though this is considered bad practice. Out of the eight recom-
mended counter-measures, four have been implemented. The remaining four are to
use dynamic time-outs, adapted to each router's connection for a better detection of
stalling and withholding, to choose randomly the recipients when sending transac-
tions requests (and linearly increasing their number for withheld transactions) rather
than using a queue, to use several nodes and to consider non-responding a bad be-
haviour, with an associated penalty. All but the third one are implementable and
could work for each individual node implementing them; the third one is a matter
of user behaviour rather than implementation.

In conclusion, the recommendations from this paper helped improve Bitcoin's
liveness by patching a DoS vulnerability and its safety by reducing an attacker's
capability to use its networking power to increase its relative computing power by
decreasing the e�ective computing power of the network. Performing the same mea-
sures and experiments on today's network would be interesting in order to measure
the real impact that the deployed counter-measures have had, taking into account
that not all nodes have implemented them.

3.1.4 Malicious mining

This sections groups two papers that studied mining strategies to misuse the block-
chain in order to increase one's expected pro�ts or mount double-spending attacks,
along with their success probabilities. Many more article have been published on the
topic of mining, either to describe more adversarial behaviours [ES14b; JLGVM14;
Eya15], or to study diverse topics such as economics or ecology [KDF13; OM14].

3.1.4.1 Nakamoto's white paper

In Bitcoin: a peer-to-peer electronic cash system [Nak08], Nakamoto gives a proof
of concept for Bitcoin, describing transactions, blocks, the blockchain, and the risk
of malicious forks in order to commit double-spending attacks.

His model implicitly assumes two competing entities: the honest nodes and the
Byzantine ones. Each entity mines synchronously: when a node �nds a block, all
the other of the same entity instantly start working on it. The goal of the Byzantine
nodes is to produce a blockchain longer than that of the honest ones.

Nakamoto uses this model to compute suitable deep-con�rmation thresholds de-
pending on the power of the adversary: this led to Bitcoin's current value of 6.
In Nakamoto's model, an adversary controlling 10 % of the computing power has a
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success probability less than 0.1 %; that of one with 30 % of the computing power is
greater than 17.7 %.

Given the strong assumption of synchrony and the very weak adversary that
barely deviates from the (implicit) protocol, and given the current computing pow-
ers of mining pools, the biggest one consistently controlling more than 15 % of the
computing power [BC.I; BT], the trust in Bitcoin's current deep-con�rmation thresh-
old may be overly con�dent. Nonetheless, this paper has provided the �rst model of
attacks on Bitcoin along with the system.

3.1.4.2 Sel�sh mining

In Majority Is Not Enough: Bitcoin Mining Is Vulnerable [ES14a], the authors
describe a much more e�cient mining strategy that can increase the revenue of a
pool and requires much less than 50 % of the network's total computing power.

The model makes the following assumptions: the system comprises a �xed num-
ber of miners. Some of them, controlling a fraction µ of the total computing power,
collude to form a sel�sh mining pool. The propagation time of blocks is considered
negligible in front of the time it takes to �nd them: there are no accidental forks
caused by the honest miners and when one is triggered by the sel�sh miners, a frac-
tion γ of the honest computing power chooses to mine on top of the sel�sh branch.
It also assumes the absence of target adjustment.

We have described the sel�sh mining strategy in Section 2.3.5. It consists, for
the sel�sh pool, in not releasing blocks when they are found but only when, if kept
secret any longer, they would with high probability be pruned out of the blockchain.
Thus, the action taken by the sel�sh pool when a miner found a block depends on
the length of the public blockchain, on the number of blocks it has managed to �nd
on its own and has not released yet, and on whether or not the successful miner is
a member of the pool.

The authors prove that the e�ciency of this strategy depends on γ, the fraction
of the honest computing power that sides with the sel�sh pool when it triggers
a fork. The di�erence between the pro�ts from the sel�sh and �normal� mining
strategies increases with µ; the break-even point corresponds to the µ such that the
two strategies are equally pro�table. When γ = 0, the break-even point corresponds
to µ = 1/3. As γ grows, the sel�sh pool reaches the break-even point for lower
values of µ, down to µ = 0 for γ = 1.

The authors further present a simple modi�cation to the honest strategy, consist-
ing in randomly choosing the block on which to mine in case of fork with branches
of equal weight instead of Bitcoin's �rst-arrived policy. This modi�cation ensures
an expected γ of 0.5, while the �rst-arrived policy gives the upper-hand to pools
with broadcast advantages. Through this, the threshold at which the sel�sh strategy
becomes better than the honest ones is ensured to be 0.25.

Finally, given that the sel�sh pool has higher revenues than the other ones, it can
be expected that rational miners will join it to increase their own revenues. Given
that this also increases the revenues of the miners that were already in the pool, they
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have an incentive to let anyone in; thus, as soon as a pool gathers enough power to
use the sel�sh strategy, it can be expected to grow, reach the 50 % threshold and
overtake the whole system.

The validity of the model derives from its optimistic assumptions: accidental
forks help the sel�sh pool elongate its secret blockchain at a faster pace than the
honest miners do the public one. The absence of target adjustment simpli�es the
strategy but does not signi�cantly changes the conclusions: the worst case scenario
for the sel�sh pool is to lose a fork every 2016 blocks.

However, the sel�sh mining strategy does not in itself threaten Bitcoin's fun-
damental properties as de�ned in Section 2.2. Indeed, it decreases the fairness of
mining but still only produces well-formed blocks, and even if the sel�sh pool selec-
tively denies service to some con�ict-free transactions, its expected fraction of the
linearised blockchain remains strictly less than 100 % and they would be con�rmed
in the blocks found by the remaining honest miners. Despite this, it does increase
the probability of forks, which in turn increases the time needed for transactions to
get deeply-con�rmed, and it increases the risk of 51 % attacks that our model does
not formally capture.

3.1.5 Double-spending attacks

This section groups two papers that set double-spending attacks as their main �eld of
study. Other papers tackling the issue tend to either analyse Bitcoin or blockchains
in a more general setting [Ros14] or suggest broad protocol modi�cations [KJGK+16;
DSW16] to prevent double-spending attacks.

3.1.5.1 The insecurity of fast payments

In Double-Spending Fast Payments in Bitcoin [KAC12], the authors describe the
simplest scenario for a successful double-spending attack, where vendors do not
wait for transactions to be con�rmed before providing their goods. They show the
feasibility of such attacks and the possibility for attackers to succeed and remain
undetected and describe three countermeasures to prevent these attacks.

In order to emphasize the feasibility of the attack, they consider a very weak
adversary, who controls between two and six routers and no miner. Out of those
routers, one maintains a single connection with the vendor while the others main-
tained between 125 and 400 connections and made sure not to have one established
with the vendor. Such an adversary manages to perform double-spending attacks
with overwhelming probability against vendors that accept a transaction as soon as
they receive it rather than waiting for at least one con�rmation.

The three countermeasures they describe to mitigate those attacks are as follow:
vendors should wait a few seconds after they have received a transaction to con�rm
that no con�icting one is being propagated; they should use several routers, located
at di�erent places of the network, and verify that even in the union of their views, the
transactions funding them are not con�icting; �nally, all routers should propagate
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all well-formed transactions, even the con�icting ones. The �rst one alone would
not work: as soon as the vendor receives the transaction, she forwards it to all her
neighbours who would detect the double-spending attempt but not warn the vendor.
The other two are usual recommendations, discussed as well in [GRKC15] (analysed
in section 3.1.3.2).

Three assertions throughout the paper seem surprising to us. First, they assume
a network of 60 000 nodes based on an estimate provided by Bitcoin Wiki [BW]
using the size of the address manager of an arbitrary node. This overestimates the
number of devices running a node for at least two reasons: a single machine can have
several addresses, and this includes SPV nodes who do not propagate information.
Moreover, the value is tenfold that reported by the authors of [DW13] barely one year
later; however, the estimate is not used to analyse the results of their experiments.
Then, they use the fact that IP addresses are public because they can be sent funds;
Core has since then disabled this feature, deemed too insecure. It makes it more
di�cult for an attacker to �nd the node of a double-spending target but, given the
mapping between location and IPv4 addresses, it is still feasible unless vendors use
techniques such as VPNs to have routers at addresses that do not correspond to their
physical locations. Third, they use the anonymity of Bitcoin and the unlinkability
of addresses to state that attackers can perform double-spending attacks in total
impunity; studies have shown the limits of both properties [BKP14; AKRSC13].

This paper was later extended in [KARGC15] but the conclusions remain: ac-
cepting transactions with a con�rmation level of 0 is highly insecure.

3.1.5.2 Securing fast payments

In Have a Snack, Pay with Bitcoins [BDEWW13], the authors present a solution to
the double-spending issue for attackers that do not try to fork the blockchain. They
present an experimental validation of their solution and demonstrate its feasibility
with a prototype of vending machine implementing it.

Their model is simple: the attacker cannot map the network to �nd the neigh-
bours of a speci�c router and cannot disturb communications, but she can connect
to an arbitrary number of routers and broadcast at will. She does not mine. On the
other hand, the vendor's router does not accept inbound connections and does not
propagate transactions funding keys managed by its wallet to avoid the self-eclipsing
phenomenon pointed out by Decker et al. [DW13].

Using this model, they evaluate the success probability of double-spending at-
tacks similar to those described by Karame et al. [KAC12]. The attacker uses two
routers which release pairs of con�icting transactions at random places in the net-
work. The vendor maintains 1024 connections on average and the number of simu-
lations is increased by selecting, for each double-spending attempt, a random subset
of those as the neighbours for a simulation. Each subset comprised at most 100
neighbours.

In these conditions, they report that a vendor maintaining 100 connections will
learn of double-spending attempts with overwhelming probability (99.23 %); that
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99 % of double-spending attempts were detected before receiving 37 announcements
for a transaction or at most 6.29 s after receiving the �rst announcement. Should
vendors wait for both these conditions to hold, they report that double-spending
attempts would only succeed 0.088 % of the time. They demonstrated the feasibility
of such a strategy by implementing it in a snack vending machine.

Though this works in their scenario, one should not forget that this double-
spending scenario is really simple and more elaborate ones include forking the
network. Moreover, Miller et al. have shown that it is feasible to map the net-
work [MLPG+15]. Short of being able to let the merchant eclipse herself, an at-
tacker could send the illicit transaction to the in�uential nodes pointed out in the
same paper and let the transaction funding the vendor propagate normally in the
network; the chances that the vendor discovers the attack can be further decreased
by using several routers to broadcast the licit transaction, since the illicit one has a
much greater chance of being con�rmed.

Another issue is the consumption of network resources: if every seller (e.g. store
or vending machine) runs such a modi�ed peer, establishing 100 outbound connec-
tions and accepting no inbound ones, the network may run out of open connection
slots. Indeed, a network of n regular routers, all establishing 8 outbound connec-
tions and maintaining at most 125 parallel connections can tolerate up to 1.17n such
modi�ed peers before complete exhaustion of the open slots, preventing new peers
from joining it. This number further decreases when taking into account the other
nodes that do not accept inbound connections because e.g. of �rewalls. Moreover,
the size of the network is already deemed concerning [Caw14]: despite being an
interesting �rst step towards a more secure Bitcoin, this proposition does not solve
everything.

3.1.6 Protocol

This last section groups three papers that deal with speci�c aspects of the protocols
used by Bitcoin to generate and propagate data such as blocks. Many more focus e.g.
on di�erent ways to modify the mining process to make it fairer [PS16], discourage
the formation of pools [ES14c] or more resilient against sel�sh mining [Hei14].

3.1.6.1 Safety analysis

In Safety Analysis of Bitcoin Improvement Proposals [ALLS16], we have introduced a
simple model to formally de�ne the concept of double-spending attacks, and we have
analysed the safety, or lack thereof, of three recent works: Bitcoin-NG [EGSVR16],
PeerCensus/Discoin [DSW16], and ByzCoin [KJGK+16].

The model is but a simpli�cation of the one we have described in Section 2.2.
Indeed, a number of concepts such as coinbase transactions are not as fully described
as they should be to completely model the actual system. Nonetheless, it laid the
foundations of our model for Bitcoin in an adversarial network.
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The main contribution that is not directly continued by this work is the second
one, the analysis of Bitcoin-NG, Discoin, and ByzCoin as regards their relying on
miners to improve Bitcoin's way of processing transactions. Brie�y, the three pro-
tocols all suggest using a supervising group E` to validate transactions on the �y
instead of in slowly-generated blocks. Every time a wallet creates a transaction, it
sends it to E` rather than to all the miners; if validated, the transaction is instantly
con�rmed and de�nitively set in the history of the system. Such a system provides
much better safety and liveness properties as deep-con�rmation is not required any
more. The supervising group consists of the last ` successful miners, where ` is the
main conceptual di�erence between the three protocols: Bitcoin-NG sets it to 1,
Discoin to ∞ (i.e. all the successful miners) and ByzCoin to w, treated as a secu-
rity parameter. Thus, whenever a block is found (and, for Discoin and ByzCoin,
accepted by E`), the composition of E` changes.

The issue with those three systems is that they are all insecure. Indeed, the
probability that the blockchain only contains blocks found by non-malicious miners
is close to zero simply because of its length, and Bitcoin-NG gives much greater power
to miners than Bitcoin does as they get the ability to validate future transactions
instead of past ones when they successfully �nd blocks. Discoin relies on the fact
that, in its permanent regime, the proportion of malicious entities in E∞ is the
same as the proportion of malicious computing power, but this does not take into
account the fact that in most trajectories from the initialisation of the system to its
permanent regime, E∞ becomes polluted (i.e. more than a third of its entities are
malicious, which is a well-known bound for the impossibility to reach consensus).
Even worse, as soon as it is polluted, its malicious entities may use their presence
to veto blocks found by non-malicious miners and only accept their own, further
increasing their power over the system. Similarly, ByzCoin reaches polluted states
but the length of the window can be adjusted to increase the probability of safe
executions depending on the fraction of malicious miners.

Many more things can be said about those three protocols: for example, they
also present scalability issues, and Bitcoin-NG implements a denunciation scheme to
condemn malicious E1's. However, the point remains that they do not improve Bit-
coin's fundamental properties because of shortcomings in the handling of malicious
miners.

3.1.6.2 The GHOST rule

In Secure High-Rate Transaction Processing in Bitcoin [SZ15], the authors present a
modi�cation of Bitcoin's fork resolution method to allow the system to increase the
rate at which miners �nd blocks without jeopardising the safety of the blockchain.

They model the network as a directed and weighted graph. There are commu-
nication delays corresponding to the weights of the edges, miners do not necessarily
have the same computing power and the attacker follows Nakamoto's misbehaving
protocol [Nak08]: she aims at creating a secret branch of the blockchain to release
it at a later point in time and win the fork. Her expected block generation rate
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is constant and she does not accidentally fork her secret chain. They do not take
target adjustment into account.

The protocol they describe, called GHOST, changes the blockchain linearisation
method by rede�ning our simpli�ed pseudo-con�rmation level: instead of taking the
longest path rooted by a block, they propose to compute the size of the subtree it
roots. Formally, for a block b, the simpli�ed pseudo-con�rmation level becomes

L′b = |{b′|∃k ∈ N,∃b0, ...bk ∈ B , b0 = b ∧ ∀i ∈ [[1, k]], p(bi) = bi−1 ∧ bk = b′}|

instead of Bitcoin's

L′b = max{k + 1|∃k ∈ N, ∃b0, ...bk ∈ B , b0 = b ∧ ∀i ∈ [[1, k]], p(bi) = bi−1}.

This modi�ed pseudo-con�rmation level is then used to prune branches the same
way Bitcoin does. When forks only involve two con�icting branches, the two rules
are equivalent. As soon as multiple forks occur, they prove that their rule is safer.
Indeed, if 60 % of the total computing power work on a branch A and the other
40 % on a branch B, then the expected winner of the fork is branch A; however, if
A is forked before B is pruned out, and half of the computing power dedicated to it
starts mining on a branch C, then B becomes the expected winner of the fork even
though the subtree containing A and C at the beginning of the fork between A and
B has received more computing power. With GHOST, B is still pruned out because
the combined weight of A and C is greater than that of B.

This makes a non-negligible di�erence with their adversary model: with GHOST,
the e�ective computing power of the network remains equal to the total computing
power instead of being divided by 2 in the worst-case scenario. Since the success
probability of the attack depends on the ratio between the computing power of the
adversary and the e�ective computing power of the network, it is clear that the
system is safer with GHOST.

This increased safety comes with the added bene�t of an increased scalability:
since accidental forks do not threaten the safety of the network, the generation rate
and size of blocks can be increased with jeopardising the system. On the other hand,
increasing those parameters too much still decreases the e�ciency of the network
as all nodes must receive all blocks to compute the pseudo-con�rmation levels, even
though the blockchains is still eventually linearised.

Thus, the weakest point of this solution is that it o�ers scalability at a huge cost
in e�ciency: achieving 9.09 transactions per second instead of Bitcoin's current 3
decreases the e�ciency, computed as the growth rate of the main chain divided by
the expected block generation rate, from approximately 1 (there are currently very
few accidental forks, see e.g. Sections 3.1.2.1 and 3.2.2) to 0.2. Given how Bitcoin
is already criticised for its wasteful PoW mechanism [OM14], this may not be an
acceptable trade-o�. Additionally, the adversary model is very limited: the impact
of more complex mining strategies should be evaluated as well.

As regards Bitcoin's fundamental properties, its impact seem to reside mostly in
the range of viable choices for the security parameters. Thus, though it may improve
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Bitcoin's liveness and safety by decreasing the time needed to resolve repeated forks
(because the pseudo-con�rmation level of exactly one of the blocks responsible for
the fork increases whenever a miner �nds a block, instead of �at most one�), it does
not fundamentally change them.

3.1.6.3 Proof of Stake

In Cryptocurrencies without Proof of Work [BGM14], the authors present a way
to generate blocks at a regulated pace that is much less resource consuming than
Bitcoin's PoW: the proof of stake (PoS). Intuitively, while a PoW scheme awards
blocks to miners proportionally to the work they invest in the system, a PoS one
awards blocks to stake holders proportionally to the stakes of the system they own.

A simplistic PoS protocol would use a block as the seed of a random number
generator to pick uniformly at random a satoshi, and its current owner would be
the only peer allowed to generate a new block, the lucky stakeholder (as opposed
to the successful miner of PoW schemes). For many reasons, this would be highly
impractical: it would with high probability quickly choose an unspendable coin (e.g.
one whose private key was lost), and the system would stale inde�nitely.

Thus, the Chains of Activity protocol developed by Bentov et al. is more involved.
First, a single seed is used along with a counter to elect several consecutive lucky
stakeholders, so that one can be skipped if she takes too long to produce a block.
Similarly, several consecutive blocks are combined to generate a single seed to prevent
attackers from crafting a seed giving them back the right to generate new blocks:
blocks are packed in groups of equal size, and an entire group is used to generate the
seed used to determine the lucky stakeholders of a following group. Additionally,
groups are interleaved: the k-th group generates the seed of the k + 2-th group.
Finally, a punishment scheme is used to sanction the malicious lucky stakeholders
that generate pairs of con�icting blocks.

The system relies on the following security parameters: the size of block groups,
the minimum amount of time between two consecutive blocks, the function used
to derive a seed from a group of blocks, the punishment for con�icting blocks, the
minimum amount of coins to engage as a PoS, and the time these coins are frozen
to prevent double-spending attacks.

The authors point out a number of attacks on the system: lucky stakeholders
could collude to secretly fork the blockchain in order to mount double-spending
attacks, anyone could try and bribe the stakeholders into letting one perform a
double-spending attack, or lucky stakeholders could craft blocks in such a way that
the system would pick their satoshis again. The �rst two attacks are also possible
with PoWs but much more unlikely since it would consume resources to perform
them whereas they are costless in PoS schemes.

They also suggest countermeasures: the interleaving of groups increases the min-
imum size a collusion must reach before threatening the system. Similarly to any
currency, if too many abuses are discovered, the value of the currency drops; how-
ever, they argue that since the currency itself is used to elect lucky stakeholders, an
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attack would be extremely costly and leave the attacker with an enormous amount of
worthless coins. This is slightly stronger than the argument used for PoWs schemes
as the malicious miners still have their mining equipment, which can be repurposed.
Finally, they suggest to use checkpoints, much like Bitcoin used to: known blocks
at given heights of the blockchain which are unequivocally and de�nitively agreed
upon; forks can only take place after the last checkpoint.

However, a few issues are left: checkpoints are hard to implement in a secure
and completely decentralised way; bootstraping the system (i.e. the initial money
distribution) is not feasible in a fair way with a pure PoS system as any solution
would necessarily favour the early adopters; forks cannot be solved because stake-
holders have no incentive to focus on extending a single branch since the process
is costless; �nally, it con�icts with cold storage, Bitcoin's security recommendation
to keep most of one's coins on an account whose private key is kept encrypted and
o�ine: signing a block with such a key would be impossible to automate.

This last issue can easily be solved, though, by including a challenge such that a
signature with a key K1 would be required to spend the funds but another signature
with a key K2 would su�ce to prove ownership of the funds but not to spend them.
That way, K1 may be kept encrypted while keeping K2 available to the Bitcoin
client, ready to sign blocks awarded to the account.

Finally, the PoS scheme has a lot of advantages, if only from the ecological point
of view, but some work is still required to make it usable and secure enough to be
used for a process as critical as the generation of blocks.

3.2 Measuring Bitcoin's network

Two parameters are of critical importance to Bitcoin's safety: the total hashing
power, preventing adversaries from taking over the blockchain, and the block propa-
gation time, related to the occurrence of non-malicious forks. An aggregated measure
of the two can be obtained as the network target, computed by all nodes and indi-
cated in the header of all blocks. Given that mining pools hide their power from the
network (to avoid appearing capable of 51 % attacks and being the target of DoS
attacks) and that the total hashing power used to mine is dynamically distributed
over several altcoins, measuring an exact total computing power would be quite
di�cult.

However, Decker et al. [DW13; CDEG+16] have measured the propagation time
of blocks in the Bitcoin network. As describes Section 3.1.2.1, we consider that
part of the data is missing from the results. Since, additionally, Bitcoin Core's
networking protocol has changed since their experiments, we repeated it, with a few
modi�cations.

3.2.1 Method

A modi�ed version of Bitcoin Core was run on a machine (called Parasolier in the
following) equipped with a 2.80 GHz Intel Xeon CPU (model E5-1603 v3), 8 GiB of
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RAM and 8 GiB of swap memory, and a 1 GiB s−1 Intel Ethernet Connection I217-
LM. The base source code was that of Bitcoin Core v0.13.0rc1 [Core]. Three types
of modi�cations were made: �rst, most messages uploading data were blocked right
before being serialised, letting only control and get* messages pass through; then,
inventories, blocks and transactions were all recorded by an additional thread. In-
ventories were recorded along with the time stamp of when the message was received
by the client (in microseconds), blocks with the list of neighbours at reception time
and transactions as decoded strings. The instant at which each block was logged
by the recording thread was recorded as well, as an approximation of its time of re-
ception. Finally, the client was reparametrised to establish more connections, which
required to change all select structures to use poll instead because the former is
limited to 1024 sockets, and used multiple threads to establish connections instead
of just one. Each of those follows a procedure similar to that of Core (described in
Appendix C.1), expect that it skips all sleep periods and tries all reachable addresses
picked by the address manager.

Thus, our experiment had the following parameters: our client tried to maintain
7000 simultaneous outbound connections and at most 8000 simultaneous connec-
tions; it waited for 48 hours before recording 1002 blocks and 100 100 transactions.
In both cases, all inventories of the same type were recorded from the beginning of
the recording phase to one hour after the last object was recorded. During the initial
waiting phase, it used three threads to establish connections; one of them was shut
down during the recording phase. In total, the experiment lasted for approximately
9 days: two for the initial waiting phase and seven for the recording phase. From
our measurements, we draw results regarding the network population, block and
transaction propagation. All data processing and plotting was done using Python
3.5.1, Numpy 1.11.0, Scipy 0.17.1, Scikit-learn 0.17.1, and Matplotlib 1.5.1 [WCV11;
JOP+01; PVGM+11; Hun07].

A �rst result is the comparison of the size of the network as seen respectively by
Parasolier and Bitnodes [BN]. Parasolier's dataset is the number of established Bit-
coin connections at the time each block was logged; that of Bitnodes is the reported
number of online routers for each available time stamp in the minimal window en-
compassing Parasolier's dataset. To simplify visual comparisons, we generate a third
dataset by shifting Parasolier's dataset to Bitnodes' mean. The results are reported
in Figure 3.1. Correlation was not quanti�ed.

The rates of positive and negative churn (respectively join and leave operations)
are compared as well. Parasolier's dataset corresponds to the cardinal of the set
di�erence between two consecutive blocks divided by the di�erence of their time
stamps (in seconds). Since Bitnodes already reports a positive and negative churn
for each data point, these values were also divided by the di�erence between their
assigned time stamp and the previous one. The results are reported in Figure 3.2.
For each dataset, closeness of the positive and negative churn rates is tested using
Student's t-test to compare the means. The Benjamini-Hochberg correction [BH95]
is applied to the p-values to account for the two tests performed.

For blocks, Figure 3 from Decker et al.'s 2013 measurement [DW13] is reproduced
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using our dataset. It empirically estimates the PDF of the reception time of a block
after its �rst observation. In order to do so, for each block, the list of time stamps of
inv messages announcing it was collected; the lowest value, approximating the time
when the block was introduced in the network, was subtracted from each time stamp.
Inv messages were grouped in two categories for each block: expected and other. The
former corresponds to the inv announcing the block sent by a neighbour with which
a connection had already been established when the block started propagating and
maintained until the inv was received; the latter corresponds to every other case,
i.e. repeated announcements from a single neighbour and messages from neighbours
with which a connection was not constantly maintained over the period ranging from
the time the block appeared in the network to their announcing it. All pairs of blocks
at the same height in the blockchain (that is, con�ictual blocks) were excluded from
the data set because of their limited initial propagation. The histogram, using time
steps of 0.1 s is then normalized.

Decker et al.'s �tted curve [DW13] (exponential distribution with parameter
0.107) is plotted for visual comparison. Additionally, we �tted two curves on the
plotted portion of the histogram using the Levenberg-Marquardt non-linear least-
squares [Mor78; JOP+01]: that of an exponential distribution and that of a biex-
ponential distribution whose PDF is fx0,a1,a2 , de�ned as follows:

fx0,a1,a2(x) =

{
k1(1− e−a1x) if x 6 x0

k2e
−a2(x−x0) if x > x0

where

k1 =
(
x0+(1−e−a1x0)( 1

a2
− 1

a1
)
)−1

k2 = k1(1− e−a1x0).

This function is indeed a well-de�ned PDF over [0,∞) for x0 > 0, a1 > 0, a2 > 0
such that x0 + (1 − e−a1x0)(1/a2 − 1/a1) > 0: its integral is equal to 1 and its
image is in R+. It is, additionally, continuous over [0,∞). We used the coe�cient of
determination R2 to compare the �tness of the three curves. We report the results
in Figure 3.3 where we only plot and �t curves on the restriction of the histogram
to the range 0 s to 40 s.

We evaluated three aggregation statistics: the mean, the median, and the 95th

percentile of reception times. This is done separately for the two categories previ-
ously de�ned and for their union. The estimation is performed for di�erent thresh-
olds; in each case, all reception times greater than the given threshold are discarded.
The threshold set, in seconds, is {i×10j |i ∈ [[1, 4]], j ∈ [[0, 5]]}∪{106}. We discarded
con�ictual blocks as well and report the results in Figure 3.4.

Finally, the set of recorded transactions is scrutinized for double-spending at-
tempts.

3.2.2 Results

Parasolier started running the modi�ed Bitcoin client at 13:04:30 GMT on Monday,
August 8th, 2016. Recording started 48 hours later. 100 100 transactions had been
recorded at 13:37:41 GMT on Wednesday, August 10th, 2016 and 1002 blocks had
been recorded at 06:07:08 GMT on Wednesday, August 17th, 2016. The �rst block
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Figure 3.1: Total size of the Bitcoin net-
work as measured by Bitnodes and Para-
solier.

Figure 3.2: Churn rate in the Bitcoin net-
work as measured by Bitnodes and Para-
solier.

recorded was 0000000000000000040241363b56921253509e73a6d97922dced623df

85e32ff, at height 424 562 on the main chain, and the last one 00000000000000

0002cdf87608fe2536415c5da70db253a5aadaf72cac9ecd1f, at height 425 560. A
1003rd block (0000000000000000055a3d177683aa025fb763be716ce4e812fa521406
553996, at height 423 508 and having lost a fork) was received on Monday, August
15th, 2016 at 20:28:59 GMT but rejected as too old: its time stamp corresponds to
Wednesday, August 3rd, 2016 at 17:06:55 GMT.

Figure 3.1 represents the size of the network as a function of time. For Bitnodes,
the network comprises 5255.73 routers on average, while Parasolier only maintained
3097.00 simultaneous connections on average. The di�erence, of 2158.724, represents
41.0 % of the �gure advertised by Bitnodes. The peak-to-peak ranges are respectively
254 (4.7 % of the maximum value) and 246 (7.7 %).

Figure 3.2 represents the churn rates of the network as a function of time. For
Bitnodes, the positive (resp. negative) churn rates has a mean of 6.94× 10−2 s−1

(resp. 6.96× 10−2 s−1) and a standard deviation of 2.2× 10−2 s−1 (2.3× 10−2 s−1).
The corrected p-value is approximately 0.834. For Parasolier, these values are respec-
tively equal to 2.28× 10−2 s−1 (2.24× 10−2 s−1), and 1.6× 10−2 s−1 (1.6× 10−2 s−1),
with a corrected p-value also approximately 0.834. The maximum and minimum
values for positive and negative churn rates as seen by Bitnodes and Parasolier are
grouped in Table 3.2.

Figure 3.3 represents the empirically estimated PDF of the propagation time of
a block to a node. Over the measuring period, three forks occurred and were all re-
solved after only one block; thus, a total of 6 con�ictual blocks were excluded from
the results. This yields 2 045 716 expected announcements for a total of 2 996 363
announcements kept: the expected ones represent 68.3 % of them. The R2 scores

4All values have been rounded to the selected decimal precision, hence the mismatch.
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Positive Negative
(s−1) Min Max Min Max
Bitnodes 0.020 0.332 0.015 0.316
Parasolier 0 0.167 0 0.250

Table 3.2: Minimum and maximum values of the churn rate in the Bitcoin network
as measured by Bitnodes and Parasolier.
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Figure 3.3: Normalised histogram of times since the �rst announcement of a block
and �tted curves.

for the curve �tted by Decker et al. [DW13], our exponential curve �tted with pa-
rameter 0.142 s−1, and our bi-exponential curve with parameters a1 = 6.880 s−1,
a2 = 0.182 s−1, and x0 = 2.494 s are respectively 0.857, 0.909, and 0.980. The
maximum measured values for expected announcements and the whole set are re-
spectively 139 936 s (1 d, 14 h, 52 min and 16 s) and 530 440 s (6 d, 3 h, 20 min and
40 s).

Figure 3.4 shows aggregation statistics for subsets of the recorded blocks an-
nouncements. The top �gure depicts the fraction of the total set represented as a
function of the chosen threshold; for the expected set, the subset contains the entire
set for thresholds above 2× 105 s; in the other two cases, the subset only equals the
entire set for the last threshold, 106 s. However, for each set, more than 95 % of
the set is included for all thresholds above 100 s. We use these values as remark-
able thresholds and give numerical values for the fraction of announcements received
in less time than the threshold and the mean, median, and 95th percentile of the
reception times of these subsets of announcements in Table 3.3.

Of the �rst 100 100 transactions received during the recording phase, constituting
the dataset, there were only 14 446 di�erent ones. The maximum number of times a
transaction has been received is 759, its mean and standard deviation are respectively
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Expected Other All

Threshold (s) 100 2× 105 100 2× 105 106 100 2× 105 106

Fraction 0.98 1 0.961 0.998 1 0.968 0.999 1

Mean (s) 7.8 51.5 8.4 631.7 1379.3 8.2 396.0 840.6

Median (s) 4.0 4.1 4.3 4.5 4.5 4.2 4.3 4.3

95th percentile (s) 30.0 41.7 32.5 62.5 66.8 31.5 52.3 54.1

Table 3.3: Subset of values from Figure 3.4.
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equal to 6.93 and 17.33. The set contains two pairs of double-spending attempts.
In each case, the two con�icting transactions are actually the same one, signed with
di�erent ECDSA nonces: the only di�erence between the two transactions is the
signature (but both are valid), which is enough to alter the transactions's hash and
make it appear as a double-spending attempt.

3.2.3 Discussion

Let us make a number of general remarks about the overall design of the experiment
before going further into the discussion of all the reported results. First, Deckeret
al.'s 2012 experiment was ten times as long as ours, which makes their results more
resilient against periodic e�ects: the activity in the network may depend on the
seasons, e.g. if people shut down their nodes while on holidays. We do not capture
such phenomena.

Then, the accuracy of the sampling of the network could be greatly improved.
Indeed, we only estimate the time stamps of the snapshots we took of Parasolier's
neighbours as the time at which logging the list was actually performed, but the
impact of this drift is below the order of seconds. However, more importantly, our
sampling is coarse: the longest time between two snapshots in our experiment is ap-
proximately 108 minutes, the time it took the network to �nd block 425 380. Given
that we miss all events where a neighbour disconnects and reconnects between two
consecutive snapshots, our estimate of the churn is probably a lower bound. Mod-
ifying even more Core's code to actively log all connections and disconnections5

would provide much better estimates of the churn rates. Finally, tracking neigh-
bours over successive connections is impossible for Bitcoin: a router with the same
network address as a previous neighbour may actually be a completely di�erent de-
vice, and there are several scenarios in which two routers with the same IP address
but di�erent port numbers may or may not correspond to the same machine.

Additionally, Parasolier was using a large part of its CPU, and RAM and swap
memories to maintain this many parallel Bitcoin connections and perform Core's
regular operations as well as logging the experimental data. We could push the
experiment further and over a longer period of time with a more complex architecture
supported by more hardware: given that Parasolier recorded more than 39 GiB
of data over the experiment, running again a similar experiment with a back-end
database processing the data on the �y to manage the experiment would be necessary
to prevent shortcomings such as our recording only a seventh of our expected number
of di�erent transactions.

Figure 3.1 roughly shows that Bitcoin's churn follows a cycle whose period is
roughly equal to a day. The maximum value of each peak corresponds respectively
to approximately 17:34, 19:35, 21:10, 17:14, 14:58, 19:28, and 19:25 (all hours given
in GMT) on respectively Wednesday, August 10th, 2016 to Tuesday, August 16th.
Western Europe used GMT+2 and most of America GMT-4 to GMT-7 during that

5Core natively logs all connection establishments and tear down but identify neighbours by a
counter.
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time: these peaks correspond to evenings in Europe and daytime in America. Thus,
a possible explanation of this churn is that many Bitcoin routers run on computers
that are online during the day in America and shut down at night. However, it
still only represents a small fraction of the network as seen by Bitnodes, as the
peak-to-peak range is less than 5 % of the maximum value.

A large part of the churn may also be completely invisible to Bitnodes, which can
only connect to reachable routers: most typical home computers are located behind
a NAT-box, which requires some extra con�guration to enable port-forwarding and
let other routers initiate connections to them. It furthermore seems likely that a
fraction of those are only up when their owners are home and awake. However,
determining the fraction of the network this represents, or its actual part in the
churn reported by Bitnodes and Parasolier, is near impossible.

A last remark to be made about Figure 3.1 is that our 48 h initial waiting period
was apparently not long enough: it took Parasolier two to three more days to enter
a �permanent� regime, where its number of connections follows similar trends as
that of Bitnodes. How Bitnodes manages to maintain 2000 more connections than
Parasolier is unclear to us, but possible explanations are that it may run even more
connection threads than we do, that it may use a di�erent neighbour discovery
protocol and that it may use several servers to increase its chances of having other
routers trying to reach it, letting a centralised server aggregate the di�erent lists of
neighbours.

Figure 3.2 shows that Bitnodes' churn rate undergoes fast variations but remains
contained in a window ranging from 0.05 s−1 to 0.10 s−1 with very few exceptions,
while that of Parasolier has smaller variations (from 0.01 s−1 to 0.04 s−1) but many
more unusual peaks. This may, however, be explained by the di�erent sampling rate.
Another surprise is that the peaks do not seem to match: the highest peak reported
by Bitnodes, shortly after the beginning of the recording, corresponds to a sudden
drop in the number of neighbours in Figure 3.1 but to no unusual value in Parasolier's
measurements. Finally, the assumption of independence used to compute the p-
values may be questioned: issues located between the recording machine and the
Internet (e.g. in the ISP's network) will be felt by both the positive and negative
churns.

An intermediate conclusion on the churn in the Bitcoin network is that the
apparent size of the network was, all in all, relatively stable throughout our exper-
iment. However, this happens because the positive and negative churn compensate
each other rather than because they are non-existent. Thus, improvement proposals
should take it into account.

Figure 3.3 reproduces Decker et al.'s curve [DW13] but shows an improvement
in the propagation delays for blocks. Indeed, the exponential curve that �ts best our
data has a higher parameter, which indicates that the PDF is more concentrated
around small reception times. We get an even better �t by using a bi-exponential
curve to account for the shape of the distribution. This improvement may come from
the modi�cations the protocol has undergone since the �rst study (e.g. transmission
and validation of headers �rst), but also from improvements of the global Internet
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infrastructure and speed, with an ever growing share of the network built on optic
�bres.

Dropping repeated announcements rather than marking them as unexpected
does not signi�cantly modify the results: only 3309 announcements are in this case,
which represents a mere 0.1 % of the total number of announcements used above,
and the outliers are not part of them.

Figure 3.4 shows data not reported by Decker et al. [DW13]: the variation of
aggregation statistics depending on the amount of time after which recording is
stopped for a speci�c block. The latest block advertisement was recorded more than
6 days and 3 hours after the �rst corresponding announcement was received: given
that the recording phase lasted slightly more than 6 days and 18 hours, it does not
seem unlikely that increasing the length of the experiment would still increase the
mean reception time signi�cantly. Thus, Decker et al.'s assertion that the mean
propagation time is 12.6 s [DW13] is not satisfying without an explicit cut-o� value.
The 95th percentile only increases by a factor slightly below 2 over the last 3.2 % of
the recorded data, and the median is relatively stable (increased by only 5 %), but
the mean, more sensitive to outliers, is multiplied by 105 over the last 3.2 % of the
recorded data.

Though computing the median reception time on the lowest 95 % recorded val-
ues is equal to computing the 47.5th percentile on the whole dataset, what we do
is conceptually di�erent: we compute it for a �xed threshold. Indeed, increasing
the duration of the experiment to receive more very late advertisements would not
modify the values we report for all thresholds below 3600 seconds, the minimum
time each advertisement was allocated to reach Parasolier. Instead, it would af-
fect the fraction of the dataset represented by those values. At this point, we need
to point out that our experiment was already somewhat unfair, as each block was
allocated less time than the previous one to propagate in the network before the
end of the experiment. A fairer experiment design would take that into account;
we did not actually expect to receive advertisements for blocks that had started
to propagate more than one hour ago, since connection establishment is normally
used to determine which blocks to announce to the new neighbour. This could ac-
tually be used to improve further the block propagation detection mechanism that
we have implemented based solely on advertisements using inv messages (see Ap-
pendix C.3), which prove somewhat unreliable, possibly in part because of upload
limits respected by some routers: they may wait a long time before sending an-
nouncements once their daily or weekly upload quota is reached. However, given
that even expected announcements may arrive very late, it would potentially not
completely �x the situation.



Chapter 4

Improving Bitcoin

The last part of this work focuses on improving Bitcoin. It does so in two ways:
�rst, Section 4.1 describes a network simulator that we implemented in order to
test e�ciently possible solutions to some of Bitcoin's problems. Then, Section 4.2
presents an approach based on distributed hash tables (DHTs) to enhance Bitcoin's
safety property.

4.1 Network simulator

Bitcoin implements several alternate blockchains and networks on which experi-
ments can be conducted either in open or closed environments. However, evaluating
the e�ect of some parameters on the overall system can be quite challenging in
those environments for various reasons, including concurrent experiments and size
di�erences. Thus, we chose to implement a simulator that replicates the parts of
Bitcoin that are of interest to us, in order to be able to analyse the e�ect of pro-
tocol changes on the network. Section 4.1.1 describes our implementation and the
protocol we followed to validate it. Then, Section 4.1.2 presents the results of the
validation experiment. Finally, Section 4.1.3 highlights possible use cases.

4.1.1 Method

Our simulation focuses on blockchain replication over the network: the main part of
Bitcoin that is implemented is the block propagation mechanism. The blockchains
branches present in the network are tracked, along with their acceptance by nodes.
The implementation is in Java 1.7.0_101. All parameters described as simulation
parameter in the following are to be �ne-tuned through an experiment made to
validate our model simply called the validated experiment. On the other hand, so-
called arbitrary parameters are assigned a value or a range thereof based on the
literature and were not evaluated individually. A single (pseudo-)random number
generator was used for the experiment. It was seeded with the arbitrarily chosen
value of 123584352 to yield reproducible results.
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We de�ne three categories of nodes: regular, jumbo and NATed. The �rst one
correspond to what constitutes most of Bitcoin's network according to the authors
of [MLPG+15]: nodes following the usual connection protocol, they establish 8
outbound connections and accept up to 117 inbound ones. The second one refers
to very well-connected nodes, such as those usually maintained by Bitcoin trackers,
accepting an in�nite amount of inbound connections and establishing an arbitrary
number of outbound ones. Finally, the third category regroups all the nodes hidden
behind �rewalls, establishing 8 outbound connections and refusing all inbound ones.
Nodes can receive blocks from their neighbours, validate them and �nally broadcast
them. They can also �nd blocks, with a probability equal to their share of the total
hashing power of the network.

The simulator uses discrete time steps of arbitrary length. At each step, all nodes
validate their bu�ered, newly-received blocks and broadcast the recently validated
ones. Nodes can also leave an join the network, and reestablish outbound connections
when they have less than their target number.

The number of steps required to validate a block is �xed for each node, drawn
from a Gaussian distribution whose standard deviation is 1 and whose mean is a
parameter of the simulation. To that is added the time needed to receive the block.
Only one block can be received at the same time, but a block can be received while
another one is being validated.

The broadcast model is as close to that of Bitcoin as possible: each node main-
tains a send bu�er for each of its neighbours and iterates over them to �nd non-empty
ones. When it �nds one, it �ushes it and sends all blocks the associated neighbour
is interested in. The time it takes to send a single block and the maximum number
of non-empty bu�ers a node iterates over in a time step are simulation parameters.
The sending process is batched: nodes wait to have sent all the blocks they have
started sending during the same time step before resuming the looped iteration over
the bu�ers to send a new batch.

Finally, join and leave operations use the probabilities derived from Bitnodes;
several events of each kind can happen during the same time step. Nodes establish
as many connections as needed to �ll up their targets in a single time step; leaves
are performed before joins, themselves performed before the nodes already in the
system compensate for their lost connections. When a new node join, it catches up
a number of blocks chosen uniformly at random between 1 and an arbitrary value.

To validate the simulator, we tuned it to replicate the results from the measure of
block propagation times described in Section 3.2. We considered a network with 5000
regular nodes, 50 jumbo ones and 1000 NATed ones, as an approximation guided by
Bitnodes [BN] and the results from [MLPG+15]. Jumbo nodes each established a
number of outbound connections chosen uniformly at random between 90 and 700.
Another node, called the measuring one, replicated what Parasolier did during our
experiment: connect to as many nodes as it could and log the arrival time of block
announcements. Time steps each lasted 0.1 s, and a block was found by a randomly
selected node (apart from the measuring one) every 1000 time steps. New nodes had
to catch up with at most 5 blocks. A grid search over mean validation and transmis-
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Figure 4.1: Normalised histogram of
times since the �rst announcement of a
block in the simulation with mean vali-
dation time of 0.1 s, transmission time of
0.7 s, and at most 1 simultaneous block
transmission.

Figure 4.2: Normalised histogram of
times since the �rst announcement of a
block in the combined simulations with
mean validation time of 0.1 s and 0.6 s,
transmission time of 0.2 s and 1 s, and at
most 1 simultaneous block transmission.

sion times ranging from 1 to 10 time steps (both included) and maximum number
of simultaneous broadcasts ranging from 1 to 4 (both included) was performed to
determine their best values. An histogram similar to that of Figure 3.3 was plotted
(without distinguishing expected announcements from the rest); the evaluation was
performed by computing the R2 score of the bi-exponential curve with the param-
eters from that same �gure. A total of 5000 blocks were released. Every 50 blocks,
the graph was fully regenerated to average out strange con�gurations.

To simulate some of the heterogeneity of the graph (di�erent block sizes and
nodes,...), we also perform the same evaluation over pairs of histogram: for each
such pair, we average the two estimated PDFs to obtain a third one that we compare
to the �tted bi-exponential curve.

4.1.2 Results

Figure 4.1 represents the simulated PDF of the propagation time of a block to a
node best �tted by our bi-exponential curve with the parameters from Section 3.2.2.
The parameters corresponding to that simulation are a mean validation time of 0.1 s,
a transmission time of 0.7 s and each node could send at most 1 block at a time.
The R2 score for our bi-exponential curve is 0.4025. The latest announcement was
received after a simulated time of 75.8 s.

Figure 4.2 represents the same graph where instead of selecting the best experi-
ment, we select the best average of two experiments. The parameters corresponding
to those simulations are a mean validation time of 0.1 s and 0.6 s respectively, a
transmission time of 0.3 s and 1 s respectively and both only admit 1 simultaneous
block transmission per node. The R2 score for our bi-exponential curve is 0.6122.
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4.1.3 Discussion

A number of results are somewhat unsurprising in this simulation. Indeed, the time
between the �rst and last announcements of a given block is much shorter than
in the Bitcoin network, but what is really surprising in that comparison is rather
the enormous delay in the Bitcoin network: all of our simulated nodes behave as
expected and the propagation of any message in the network terminates somewhat
quickly.

Similarly, the shape of the simulated PDF corresponds to the usual three-phased
propagation process, with a very slow start, an exponential progress once enough
nodes have started propagating and �nally a slow termination. Given our determin-
istic propagation mechanism (except for the churn in the network), the �nal phase
is rather e�cient.

Here again, what is really surprising is that this simulates extremely poorly the
measured behaviour of the Bitcoin network: its �slow-start� phase is seemingly non-
existent and it reaches almost immediately a quite fast expansion phase that also
quickly gives turn to a very slow �nal phase, even though the nodes are supposed to
simply iterate in a completely deterministic way over their neighbours to broadcast
data. There are many apparent explanations for this di�erence in behaviour. First,
in the simulation, nodes detect instantly when one of their neighbours disconnects,
and re-establish instantly a connection; Bitcoin is said to be much less e�cient in
that regard but the detection of errors thrown by the TCP sockets used to handle
the connections may actually su�ce to void this argument. Then, only block data
is simulated: the Bitcoin network is used to transmit many more messages such as
transactions and addresses. Added to the random delays which can arise over the
Internet, this may partially explain Bitcoin's longer tail. Bitcoin probably also has a
much larger variance because of the variety of nodes in the network, that our model
with only 3 types does not fully capture.

The variable size of blocks was approximated in Figure 4.2: it behaves as if
there were two types of blocks, small and large ones. It greatly increases the �tness
of the bi-exponential curve (by 54 %). A better �t could probably be obtained by
combining even more simulations and possibly computing a weighted average of the
PDFs to account for the unequal distribution of blocks.

Finally, given how much more e�cient the simulated network quickly becomes,
the inability of our model to capture this very quick initial phase really stands
out. Our main conjecture to explain this failure is the unforeseen importance of
parallel, more e�cient communication means, such as the Fast Relay Network or
its successor [Cor16]. Through these specialised network, blocks seem to be almost
instantly transmitted to su�ciently many nodes to skip the slow start phase of the
usual gossip mechanism in random graphs.
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4.2 Reinforcing Bitcoin's safety

In Section 2.2, we have presented Bitcoin's liveness, safety and validity properties.
However, we consider the safety not to be strong enough for a �nancial system. This
section presents and extends our work from [LAL], in which we have showed how to
enhance Bitcoin's safety to ensure the following:

Property 5 (Bitcoin's strong safety)
A transaction con�rmed by some rational node will eventually be deeply con�rmed
by all rational nodes at the same height in the blockchain.

In order to achieve that result, we need to add a few more assumptions to our
model. First, the maximum number of Byzantine nodes in Π at any time is set to
f = b(|Π| − 1)/(3 + ε)c, for some ε > 0; this bound derives from the underlying
partially synchronous network [DLS88].

We insist on the assumed absence of hash collisions: transaction, block and
outputs are uniquely de�ned by their 256-hash; we denote by h(·) the function
yielding the 256-hash of transactions, blocks, outputs and extend its de�nition so
that for an input i consuming output oi, h(i) = h(oi). We further assume that
these hashes are uniformly distributed in {0, 1}256, as could be expected from a
standardized hash function. We call h(θ) the ID of object θ

The uniform distribution seems to hold in practice, as shown in Figure 4.3. It
depicts the frequency at which each hexadecimal character appears as the �rst of
h(x), for x iterating over the set of transactions contained in 100 consecutive blocks
starting at height 420 000 and their inputs. 19 transactions were excluded because
they were too big to be decoded by Core's RPC API; thus, this study covers 368 327
hash results over 102 283 transactions. The dashed line represents the mean, equal
to 0.0625 as expected from the uniform distribution. The low standard deviation
of 4.78e−4 (with Bessel's correction) con�rms the good performances of the hash
function as regards the pseudo-randomness of the output.

4.2.1 Con�ict Detection Services

Figure 4.4 depicts the path of transactions from the users to the blockchain: cur-
rently, users submit transactions to a transaction con�ict detection service (TCDS)
made of the routers, stores and wallets; in case of con�ict, each node p decides locally
which of the transaction should be accepted, based mostly on which one provides
the highest expected pro�t for p. Node p then mined to con�rm the transaction
and sends it to other routers, which again decide individually whether to accept it.
The process is then similar for blocks from the miners to the blockchain through the
block con�ict detection service (BCDS).

The above mechanism, chosen for performance reasons, yields an inconsistent
validation of con�icting transactions and blocks. This sections describes our syn-
chronization mechanism forcing these two con�ict detection services (CDSs) to pro-
vide the same answer to each node.
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Figure 4.4: Orchestration of Bitcoin: wal-
lets submit transactions to the network.
Once validated, the miners include them
in the blocks they build which, once vali-
dated, are accepted in the blockchains.

Since the blockchains is, at its core, a simple distributed database, an analogy can
easily be derived between emitting transactions and writing in the database. Thus,
what we need is a process to grant exclusive access to inputs to the transactions
that use them in order to prevent double-spending attempts: transactions need to
explicitly lock their inputs. Yet, unless care is taken, locking objects one by one may
cause deadlocks. As the application we consider involves di�erent entities spread over
a large area, it is not advisable to rely on having all of them conform to the same
locking strategies. Moreover, from a performance viewpoint, it may be impossible
to run deadlock detection and prevention protocols assuming independent object
locking.

The three works studied in [ALLS16] failed to improve Bitcoin's overall security
because they all introduce single points of failure in the form of E`, tasked with the
management of all locks for the entire system. We aim at avoiding this pitfall by
introducing the least amount of synchronization required to guarantee consistent
con�ict resolutions for both transactions and blocks.

4.2.1.1 Speci�cation of the CDSs

Transaction Con�ict Detection Service The purpose of the TCDS is to ensure
that concurrent transactions do not try to use common inputs. We propose a TCDS
that provides the equivalent of an atomic locking mechanism for all of the inputs of
each transaction. Formally, the TCDS o�ers a single method called grantInputs. It
accepts a transaction T as parameter and returns with granted or denied. When
an invocation returns with granted, we say that the method exclusively grants the
inputs in IT to T or, in short, that T is granted. Conversely, T is denied when
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grantInputs(T ) returns denied.
Based on this de�nition, we require the TCDS to provide the following properties:

Safety: If a transaction T is granted then no other transaction T ′ such that IT ∩
IT ′ 6= ∅ is granted.

Liveness: Each invocation of grantInputs eventually returns.

Non triviality: If there exists an invocation of grantInputs on T ∈ T , and no
other invocation of the grantInputs on T ′ ∈ T such that IT ∩ IT ′ 6= ∅, then
T is granted.

Block Con�ict Detection Service The BCDS aims at ensuring that any vali-
dated block has at most one valid block as its immediate successor. It o�ers a single
method, grantBlock, that accepts a block b as parameter. This method returns
with granted or denied. When an invocation returns with granted, we say
that the method validates b as the unique successor of p(b) or, in short, that b is
granted. Conversely, b is denied when grantBlock(b) returns denied. Based on this
de�nition, we require the BCDS to provide the following properties:

Safety: If a block b is granted then no other block b′ such that p(b) = p(b′) is
granted.

Liveness: Each invocation of grantBlock eventually returns.

Non triviality: If there exists an invocation of grantBlock on b ∈ B and no other
invocation of grantBlock on b′ ∈ B such that p(b) = p(b′) has ever been
granted, then b is granted.

With such a system, forks are prevented and transactions may be considered
deeply con�rmed as soon as they are included in a granted block.

4.2.1.2 Implementation of the CDSs

We propose to distribute the implementation of the CDSs over speci�c sets of nodes
randomly chosen in the system. This section supposes that each node has a (not
necessarily unique) identity. Each object θ (i.e., input, transaction or block) is
assigned a referee πθ, the node whose identity is the closest to h(θ).

When a wallet creates a transaction T , it submits it to its referee πT , which is
in charge of invoking the TCDS for T . This invocation consists for πT in asking
a lock to the referee of each input in IT , in the lexicographical order of the input
IDs. If any such lock is denied, πT might try up to some threshold of times; if
it fails to obtain the lock afterwards, it releases all previously obtained locks and
returns denied. Otherwise, after obtaining all the locks, πT returns granted.
The Release method consists in proving to the referee of each locked input that
transaction T will be denied by exhibiting the con�icting transaction T ′ that was
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granted. The correctness and, in particular, the lack of deadlocks, result from
the fact that locks are always obtained in lexicographical order. A lock can be
implemented using a combination of Test-and-Set and Reset primitives. The referee
πi that wishes to lock input i �rst tests the value of a binary register. When this
value is 0, it modi�es the register to 1 and uses the lock. Releasing a lock is done
by resetting to 0 the register value. The fact that T has been granted the lock on
i is proven by πi's signing T ; the fact that T has been granted is proven by πT 's
signature of T . Each signature is bundled with the identity of the signer so that
any node can verify both that the signature is correct and that the signer was the
appropriate referee.

Bitcoin can easily be extended to accommodate this process: each transaction T
must include a special validation output oval; πT can then compute a group signature
(e.g. [Bol03]) using those of each input referee and its own and append it, along with
everything needed to verify it, to the challenge χoval . The value v(oval), called the
validation fee, provides an incentive for referees. A fair and easy way to share the
output is to randomly pick one of the referees and give it the entire reward. This
requires seeding a random number generator in a publicly veri�able way, and referees
should not be able to manipulate the draw; using some information that can only
be published after the TCDS has returned, e.g. the block in which the transaction
is included, can achieve this. Thus, giving transaction T 's validation fee to its k-th
referee, where k = h(h(T )||h(b)) mod s with b ∈ B such that T ∈ c(b) and s the
total number of referees is a possible solution. Finally, any node can verify that
a transaction T was granted by checking that χoval contains the signatures added
by the referee πT and that they are correct. This process leads to the fact that
transactions now each have two IDs: one used for the TCDS operations (de�ning
the referee and verifying its signature), and one used to refer to the transaction once
it has been granted.

The process is simpler for blocks, since each one only has one parent to lock.
When a miner generates a block b, it can submit it to πp(b), in charge of invoking the
BCDS on b. To simplify the implementation, πp(b) can mark that the BCDS returns
granted by applying the mechanism used by the TCDS on the coinbase transaction
of b; since coinbase transactions have no inputs and can only be propagated as part
of a block, they do not need to be granted anyway. The remark about the two
di�erent IDs holds as well, with the added remark that the hash used in the PoW
does not cover the referee's signature.

4.2.2 Leveraging DHTs to Implement the CDSs

The fundamental principle of our two CDSs is the link between each Bitcoin object
(i.e. transaction, input, and block) and its referee. Thus, each transaction is granted
an exclusive access on each of its inputs and each block has at any time at most
one successor. Our solution to implement such a link simply consists in bringing
some structure to the underlying unstructured peer-to-peer overlay of Bitcoin. The
topology of unstructured overlays conforms random graphs, i.e. connections between
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nodes are mostly established according to a random process and routing is not
constrained. Object placement enjoy the same absence of constraints: Bitcoin uses
�ooding techniques to let each node retrieve objects. On the other hand, structured
overlays, also called DHTs, build their topology according to structured graphs.
For most of them, the identi�er space is partitioned among all the nodes of the
overlay. Nodes self-organize within the graph according to a distance function based
on identities (e.g. two nodes are neighbours if their identities share some common
pre�x), and possibly other criteria such as geographical distance. Each application-
speci�c object is assigned a unique ID selected from the same identi�er space. Each
node owns a fraction of all the object of the system. The mapping derives from the
distance function.

Any DHT could be a valuable candidate to organize nodes and objects in Bit-
coin, as long as the chosen DHT is capable of handling churn (see e.g. [HKZG15] or
Section 3.2) and the presence of colluding Byzantine nodes. S-Chord [FSY05] and
PeerCube [ALRB08] are two such DHTs. Brie�y, both DHTs gather nodes into clus-
ters, each constituted a vertex of the graph. All the routing and storage operations
classically devoted to each node in a non-clustered DHT are jointly handled by all
the nodes in a cluster, through Byzantine-tolerant consensus protocols. This makes
such DHTs highly resilient. In addition, the impact of churn is mainly handled at
cluster level, which minimizes the impact on the graph structure of the DHT. Fi-
nally, both DHTs limit the sojourn time of nodes at the same position of the overlay
(through induced churn [AS04]) to prevent the adversary from choosing its own po-
sitions and eclipsing correct nodes from a given region of the overlay. Thus, each of
our referees actually corresponds to a cluster of nodes, which guarantees its safety.

Despite their qualities, both DHTs assume the presence of a trusted third-party
to act as a public key infrastructure (PKI) in charge of assigning certi�ed identities
to each node. Such an assumption is unrealistic in large scale, dynamic and open
systems, and thus we can only rely on nodes to create themselves their identities.
There is however no guarantee that each one will create a single identity, if it is
pro�table to get several of them. To drastically limit the number of identities per
node, we leverage the PoW mechanism: each node must solve a computationally
expensive challenge to create each identity, which in expectation makes the number
of identities a node can maintain proportional to its computing power. Such an
approach is not new [LNBZ+15]. Hence, an identity I comprises a public key PKI ,
a time stamp tI , a nonce νI , and the hash of the last known block h(bI) of the
blockchain. The public key authenticates messages. The time stamp forces an
induced churn: identities have a lifetime of ∆ time units, after which they expire.
Finally, the nonce is used in the PoW mechanism: I is only considered valid if,
besides not being expired, h(PKI ||tI ||vI ||h(bI)) < γ, where γ is a network-speci�ed
target.

Time stamps cannot be trusted: a Byzantine node could either spend months
pre-computing a lot of identities all with the same time stamp to �ood the system
and take control over a large part of it at a prede�ned instant, or could simply be
set in the future to extend an identity's lifetime. The latter attack is mitigated
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by Bitcoin's time stamp validity check: if the time stamp is too far away in the
future, nodes consider it invalid. In the former case, the attack is more complex to
defeat, because one cannot know a posteriori that the identity was precomputed.
This explains the presence of a recent piece of data shared by the network, i.e. the
hash h(bI) of the last block present in the blockchain. In order to cope with the
propagation delays and transiently di�erent local views of the blockchain, the hash
of one of the last β blocks is su�cient: a larger β gives an attacker more time to
precompute identities but requires less synchronization from the network.

There is no guarantee on the actual number of identities under the control of
any node from Π. This explains why we only require that f/n 6 1/(3 + ε) for some
ε > 0. A precise analysis is left for future work.

4.2.3 Discussion

We now highlight some positive and negative side e�ects of our proposal.

4.2.3.1 Positive Impact on Adversarial Mining

The main goal of this proposal is to prevent outputs and blocks from having more
than one successor each. A positive side-e�ect is that it also prevents some forms of
adversarial mining: SPV mining and sel�sh mining. Indeed, the pointer to a block
which is included in the header of its tentative successors is the hash covering its
referee's signature. Thus, it becomes pointless to keep newly found blocks secret.
Similarly, getting a newly found block from its miners to bypass the regular �ooding
mechanism is not enough, as even the successful miner cannot determine the �nal
hash of the block before it is granted by the BCDS.

4.2.3.2 Negative Impact on Nodes with Weak Computing Power

It may happen that for some reasons, nodes cannot spend momentarily the comput-
ing power to create an identity. This does not jeopardize their participation to the
network, in the sense that they can continue to receive blocks and locally manage the
blockchain. However, during the time they do not possess an identity they cannot
participate to the CDSs, and thus cannot receive fees for that. Another issue con-
cerns the equilibrium that need to be reached between the two resource-consuming
PoWs, based on their respective expected pro�ts, and the fact that an attacker may
be able to leverage this equilibrium to gain power.

For example, transactions fees currently represent only a very small fraction of
the total block reward (from block 428 939 to 428 944 included, fees represent on
average 3.81 % of the value of the coinbase transaction [BC.I]). Thus, most rational
nodes may end up mining blocks, leaving the identity generation process vulnerable
to easy 51 %-takeovers, allowing the attacker to perform double-spending attacks
and reject blocks mined by others. On the other hand, it may also encourage drop-
out miners (that left because it was too di�cult to be pro�table) to join back the
identity generation process, increasing the total rational computing power.
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An alternative to using PoW is to rely on PoS schemes for blocks: it focuses
all the computing power on the identity generation process and prevents attackers
from taking advantage of the equilibrium. However, PoS schemes need all nodes to
use the same seed for the random number generator used to elect a leader, whereas
PoWs can be used o�ine. Thus, it would make sense to use PoWs to generate
identities and PoSs for blocks, assuming the existence of a secure and usable PoS
scheme, solving the issues faced e.g. by the proposition of Bentov et al. [BGM14]
(analysed in Section 3.1.6.3).

4.2.3.3 Scalability

Bitcoin is already criticized for its lack of scalability: the size size and generation
time of blocks are such that Bitcoin can only process around 7 transactions per
second [LNBZ+15]. By adding an output to each transaction, we may worsen the
situation. Indeed, identities are 73 B using a 33 B compressed ECDSA public key
and a 4 B nonce, while inputs typically are around 150 B (i.e. 40 B for the reference
to the spent output and a sequence number, 33 B for the public key, 71 B in average
for the signature and a few script operators). Given that, for each input, we add
the group signature of the referee cluster, it requires for each signing identity to be
included as well. This may double the size of a transaction. On the other hand, since
forks and adversarial mining techniques are prevented, blocks could be generated at
a faster pace without jeopardizing the system security.

4.2.3.4 Relaxed TCDS

Our TCDS may enforce a safety property that is too strict for Bitcoin: there is a risk
that a transaction will be granted its inputs but never be included in a block because
e.g. its fee is considered too low by the miners. This would result in money leaks,
as the uncon�rmed transactions would eventually be forgotten by the network and
their outputs never become spendable. To circumvent this issue, leases can be used:
when a lock is granted to a given transaction, it is granted only fora given duration.
If the transaction wishes to use the lock for a longer period, it must revalidate its
ownership of the lock before it expires. Failure to revalidate a lock is implicitly
translated into a release of that lock if another transaction is trying to obtain it.



Conclusion

In this work, we have progressed towards a better understanding of the Bitcoin
system: we have de�ned a formal model to serve as a general framework for studies
of the system. We have used this model to derive Bitcoin's fundamental properties
of liveness, safety and validity. Then, we have describe Bitcoin's current situation
through a detailed analysis of some of the most prominent academic works that have
been conducted on the topic since 2008, which include measurement campaigns and
analyses of the underlying blockchain protocol or the �nancial application built upon
it, their vulnerabilities and ways to �x them. We have veri�ed some of this results
through our measurement campaign and analysed its shortcomings. Finally, we have
implemented a simulator in order to test quickly and cheaply improvement proposals;
our di�culties in �ne-tuning it have led us to the conjecture that a signi�cant part of
Bitcoin's �ooding mechanism is actually performed outside of its network. We have
nonetheless described our own improvement proposal to reinforce Bitcoin's safety
property and make it much more usable for fast payments; in the process, it also
improves the fairness of the mining process.

However, given how complex Bitcoin's ecosystem is, there are many more paths
that future work can explore. Indeed, though we have discussed the theoretical
feasibility of our improvement proposal, we have not yet implemented it to verify its
actual scalability. A number of open questions remain, particularly in the optimal
values of security parameters to achieve the expected level of security or in the
formal comparison of possible alternatives such as the proof used in blocks. Many
aspects of the ecosystem, such as cryptography and privacy, have been left mostly
untouched without verifying if the current solutions, such as Zerocoin [MGGR13],
are satisfying as regards their goals and usability.
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Appendix A

Bitcoin data structures

Bitcoin de�nes several types of data structures. Some of them, such as the address
manager, are never broadcast over the network and are thus entirely implementation-
dependent. Others, however, constitute the basic building blocks of the system and
its protocol, and thus follow standards. This appendix describes these structures.
Whenever the structure has changed over time (such as blocks which have increased
in size), the version described here is the latest recognized by v0.12.1 of the reference
client [Core], protocol version 70 012.

An additional source of confusion is that, depending on the �eld, data is stored
in big-endian (most signi�cant bit at the leftmost position) or little-endian (most
signi�cant bit at the rightmost position). While of utmost importance when handling
data, this information adds very little to the principles and is thus eluded.

A.1 Compact size unsigned integer

A compact size unsigned integer is an unsigned integer of variable length, used to
decrease the memory and network requirements for counts that are often small but
may need to be, occasionally, extremely large. It is as follows, where �below� means
"less than or equal to", and 1x is a short-hand for

∑x−1
i=0 2i:

1. Integers below 0xfc (252) use one byte;

2. Else, integers below 116 use two bytes pre�xed by 0xfd (253);

3. Else, integers below 132 use four bytes pre�xed by 0xfe (254);

4. Else, integers below 164 use eight bytes pre�xed by 0xff (255);

Bitcoin uses them when serializing vectors: they are always written as the count
of entries (in compact size unsigned integer form) followed by all the entries, without
any separation or ending token. In the remainder of this document, let cmpct(k)
denote the length of the compact size unsigned integer representing the number k.
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A.2 Coin

Bitcoin's monetary units are simply called bitcoins or coins. They comprise 108

satoshis, Bitcoin's smallest currency unit. Coins are not actually (digitally) repre-
sented by themselves in Bitcoin: they are only accessible in clusters, corresponding
to transactions outputs. Anyone can trace the entire history of each satoshi back
to the time it was minted through as part of the output of a coinbase transaction
by following the chain of transactions spending it. However, this procedure requires
some heuristics to compensate for their being completely fungible, such as consid-
ering that a given transaction transfers the coins by taking satoshis one by one,
depleting successively each of its inputs to �ll successively each of its outputs.

A.3 Transaction

This appendix describes what a transaction looks like, including their lock feature,
the di�erent statuses of transactions and �nally how nodes verify their validity.

A.3.1 Transaction object

A transaction consists of two lists: the inputs (transactions that funded the accounts
sending funds), and the outputs (accounts receiving funds). It is as follows:

1. An 8 B version number, currently set to 1;

2. The vector of inputs:

a) A compact size unsigned integer count of entries;

b) Then, each input is described as:

i. the 32 B hash of the transaction used as an input;

ii. a 4 B index indicating which of the transaction's outputs is used;

iii. a compact size unsigned integer indicator of the length of the signa-
ture script;

iv. a variable-length scriptSig (see Appendix B);

v. a 4 B sequence number (see Appendix A.3.2);

3. The vector of outputs:

a) A compact size unsigned integer count of entries;

b) Then, each output consists of:

i. An 8 B integer for the amount sent to that output. The value is given
in satoshis (10−8 bitcoins);

ii. a compact size unsigned integer indicator of the length of the payment
script;
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iii. a variable-length scriptPubKey (see Appendix B);

4. a 4 B lock time, see Appendix A.3.2.

A.3.2 Locks

Locking a transaction can have di�erent meanings and wallets can do it in several
ways: they can lock a whole transaction to make sure that no miners includes it in a
block before a given event (called �lock event� in the following, and said �unlocked�
when the condition it described is ful�lled), or lock any subset of its output to prevent
anyone from spending them before almost arbitrary lock events. Those events can
either be block heights or UNIX-like time stamps, and be described absolutely or
relatively.

Absolute locks are de�ned by an unsigned integer, the lock time �eld. When less
than 5 ∗ 108, it describes a block height; when greater than or equal to the same
threshold, it describes a UNIX-like time stamp, that is a number of seconds elapsed
since the UNIX epoch (00:00:00 on Thursday, January 1st, 1970). Considering that
the threshold correspond either to a number of blocks that would take on average
3.1011 seconds (approximately 9.5 millennia) to �nd or to some date in 1985, inter-
pretation is unambiguous for the foreseeable future. However, it is only a UNIX-like
time stamp because it is unsigned, contrarily to most UNIX implementations, and
will over�ow in 2106 rather than in 2038. The lock itself works as follows: a trans-
action is unlocked (and said �nal) if the lock event is strictly less than the current
event (i.e. the time stamp or height of the block trying to include the transaction),
or if all sequence numbers are equal to their maximum value, 0xffffffff (232− 1).

Usually, a transaction is locked until the block on top of the highest one at the
moment it was signed to avoid giving an incentive for miners to try and fork the
blockchain; this is, however, in no way mandatory.

Relative lock, implemented in Core but not yet deployed as of August 19th, 2016,
is slightly di�erent. First, it only applies to transaction whose version number is
greater than or equal to 2. Each input de�nes a lock event if bit 31 of its sequence
number is set to 0. It corresponds to a block height if bit 22 is set to 0 and to a time
stamp otherwise. Bits 0 to 15 give the actual value of the lock, to be understood as
�after the corresponding input was included in a block�: thus, if the sequence number
is equal to 0x80000001, it means that the transaction cannot be included in the same
block as the corresponding input (and, obviously, not before). Thus, a transaction
can only be included when all its lock events are unlocked. An additional trick
is that relative time stamps use a granularity of 512 seconds: 0x80400001 actually
means that the transaction cannot be included in a block less than 512 seconds older
than the block containing the corresponding input.

Wallets can also put absolute and relative locks in payment scripts (see Ap-
pendix B): one can ensure that a given output of a transaction cannot be spent
before an almost arbitrary locking event, the main limitation still being the over�ow
of the spending transaction's lock time.
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Figure A.1: Hierarchy of the statuses. The relative dimensions are not related to
the relative sizes of the respective ensembles: the biggest one currently corresponds
to unknown transactions.

A.3.3 Transaction status and type

Let Alice be a node and h a valid transaction hash (that is, currently, h ∈ {0, 1}256).
Let T be the set of transactions whose hash is h. At any given time, Alice sees h in
one of the following statuses:

1. unknown: Alice does not know any transaction in T ;

2. received: Alice knows one transaction from T ;

3. valid: Alice has checked that the transaction from T she received follows the
rules, as per Appendix A.3.4;

4. con�rmed: Alice's blockchain contains a block containing the transaction from
T that she has received;

5. spent: another transaction received by Alice has used the one from T she
knows about as an input;

6. rejected: the transaction from T Alice knows about has failed to pass the
validity check.

These states are not all mutually exclusive: Figure A.1 shows their relative
positions in the hash space. The evaluation is obviously dynamic: the most natural
path is unknown, received, valid, con�rmed, and spent and Core only keeps rejected
transactions in memory for a short time before throwing them away; however, no
transition is impossible, even though some are unlikely (from con�rmed to unknown
would most likely make a stop by received and rejected, which can happen in case
of fork).

In addition to these context-dependent statuses, transactions have a type, which
depend only on their content. Currently, Core de�nes three of those, which are
mutually exclusive: standard, non-standard, and coinbase transaction. It considers
transactions non-standard based on their scriptPubKey (see Appendix B), and a
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transaction is said standard if it is neither non-standard nor a coinbase one (note
that a transaction can be standard but invalid).

A coinbase transaction is the �rst transaction of its block and explains why most
miners go through the e�ort of mining: it only takes one special input that does not
refer to any past transaction, and still outputs some coins. Those have two sources:
minting and transaction fees. Section 2.1.1 describes how to compute the amount
for a given block.

As opposed to the other types, a coinbase transaction cannot be loose, i.e. it
cannot be sent outside of its block (it cannot even be valid outside of it, since its
output value depends on the other transactions included in the block). Moreover,
Core protects coinbase transactions with a special lock: they can only be spent after
a maturation period, currently set to 100 blocks. That is, if transaction T spends
the coinbase transaction from block n′ then miners can only include it in blocks at
height n such that n > n′ + 100.

A.3.4 Validity check

The core idea of Bitcoin is that anyone can verify any transaction: this is why the
trusted third-party is super�uous. This means that transaction veri�cation is of
paramount importance. This section describes how Core [Core] performs it for loose
transactions; it validates those received as part of a block during the block validation
itself (see Appendix A.4.4). Other clients may run the tests in a di�erent order but
the result should be the same, as an invalid transaction invalidates any block that
includes it, which could lead to hard forks.

Let Alice be a store receiving a loose transaction T .First, she goes through a
check list of context-independent veri�cations:

1. T must have at least one input (coinbase transactions have exactly one input,
even though it does not refer to a previous transaction);

2. T must have at least one output;

3. T must have a reasonable size (blocks must include a coinbase transaction so a
transaction taking more than the maximum size of a block minus the minimum
size of a transaction cannot be mined);

4. no output of T can be negative, and their total value cannot be greater than
the total value of T 's inputs;

5. all of T 's input are distinct (i.e. T cannot perform a double-spend attack by
itself);

6. all of T 's inputs must look valid: the size of the signature script of coinbase
transactions has lower and upper bounds, and all inputs of non-coinbase trans-
actions must refer to a transaction. However, whether this reference is actually
valid is only veri�ed later on.
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Then, Alice performs a series of context-dependent checks:

1. T must not be a coinbase transaction (which are, by nature, only con�rmed
or invalid);

2. T must have a valid version number (currently, Core only accepts 1; relative
locks require version 2, which is not yet deployed);

3. T must be �nal : its absolute lock must already be unlocked (or disabled by
the sequence numbers);

4. T must not be in con�ict with any transaction it cannot replace: it can only use
the same input as another transaction T ′ already in the mempool if all sequence
numbers of T ′ are strictly less than 0xfffffffe (used as a threshold instead
of 0xffffffff to allow the creation of locked non-replaceable transactions);

5. T must not already be in Alice's mempool;

6. Alice must have already received all of T 's inputs (in case this check fails, Alice
adds T to a list of orphan transactions rather than throwing it away);

7. no transaction has already spent any of T 's inputs;

8. T 's relative lock must already be unlocked;

9. T 's input scripts must be standard (we give slightly more details in Ap-
pendix B);

10. T must have a reasonable number of script operators to make sure that it
would not �ll up a block by itself;

11. T must have a su�ciently high fee to have a chance of being mined;

12. Alice also rejects T if its fee is barely su�cient to accept it in her mempool
and she has received a lot of those, using a counter multiplied by (599600)t, where
t is the time since she last received a small-fee transaction, comparing it to a
threshold (by default, 1.5 ∗ 104), and incrementing it by the size of T ;

13. T must not have too high a fee;

14. the set of T 's uncon�rmed ancestors (T 's ancestors that are not yet in Alice's
blockchain) must be reasonably small (no more than 25 elements for a total of
up to 101 kilobytes), with the same constraints on the size of set of descendants
of this set;

15. the sets of T 's uncon�rmed ancestors and of the transactions T would replace
if accepted must not intersect;

16. it must be rational for Alice to mine T rather than all the transactions it
replaces:



APPENDIX A. BITCOIN DATA STRUCTURES 81

a) it must have a higher fee to size ratio than each of them;

b) not replace any transaction with too many descendants (which would
require too much work to verify that T is better);

c) not have any uncon�rmed ancestor that is not also an ancestor of at least
one of the transactions T would replace;

d) it must have a total fee higher than the sum of what Alice would expect
without replacement plus what she would drop in the replacement;

17. �nally, Alice checks twice the inputs: �rst, performing all the standard checks
and then, only the mandatory ones in case of bugs in some of the desired
checks; standard but not mandatory checks include for example checking that
the script does not contain any no-operation operators that may be rede�ned
in the future. The procedure goes as follows for non-coinbase transactions:

a) T 's inputs must all be available (i.e. known to Alice and not yet spent);

b) T 's input values must all be in a valid range (i.e. not be negative or
over�ow);

c) T 's total output value must not be greater than its total input value;

d) T 's fee must be a valid amount (i.e. not be negative or over�ow);

e) all of T 's scripts must return true (see Appendix B). Alice makes a dif-
ference between the desired and mandatory checks here: she skips the
operators that are part of the standard but not mandatory checks in the
second iteration.

When T has passed all of this, Alice removes the con�icting transactions, if
there are any, from her mempool and adds T . If the mempool has grown bigger
than 300 MB, she trims it down: she throws away all transactions older than 3 days
and their descendants and, if necessary, the transactions with the lowest fee as well;
this may include T itself.

A.3.5 Transaction graph

Figure A.2 shows a toy example of how the transactions form an acyclic directed
graph which is the union of partially intersecting trees: the descendants of a given
transaction form a tree whose leaves are UTxO and, similarly, the ancestors of a
given transaction form a tree (when reversing its edges) whose leaves are coinbase
transactions. It also highlights two common operations, which are to combine trans-
action outputs in a single transaction and, conversely, split a transaction in several
outputs.
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Figure A.2: Graph structure of the transactions. This example includes 4 coinbase
transactions and 5 regular transactions. The rectangles correspond to accounts as
de�ned by the formal model: the arrow pointing to one is the output creating it,
and the arrow leaving from one is the input spending it. We show t3's ancestors
subgraph in red: its leaves are coinbase transactions.

A.4 Block

A block is a list of transaction: it provides consensual sequential ordering of part
of the events that occurred in the Bitcoin network. In Bitcoin, events are just
transactions, but the concept of blockchain needs not be that restricted. Miners
may not include transactions in a given block for four reasons: some are invalid (or
con�ict with others, in which case only the one included in the main branch of the
blockchain is valid, by de�nition), miners do not receive them before �nding the
block is found, miners may ignore some of them (e.g. those with an insu�cient fee)
and, �nally, blocks have a size limit which cannot be exceeded. Sequential ordering
is of paramount importance: one cannot spend funds before it receives them1, and
the only way to prevent money duplication when coins are not tied to a physical
token is to make sure that only the �rst transaction sending a speci�c coin from
Alice to anyone else is valid.

A.4.1 Block object

To hold all of these properties, a Bitcoin de�nes a block as follows:

1. A header, with the following �elds:

a) A 4 B Version �eld; Bitcoin Improvement Proposal (BIP) 9 [BIP9] changed
it into a bitmask used by miners to vote on the acceptance of protocol
modi�cation. Thus, block 424 416, time stamped at 13:17:19 on August
9th, 2016, has version number 536 870 912;

1A system of debt could work in Bitcoin as for any other currency: one needs to be at least
lent some money before being able to spend it. The fact that it is seamless when using a credit
card is barely a re�nement of the system.
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b) The 32 B hash of the block's parent in the blockchain;

c) The 32 B root of the block's Merkle tree (see Appendix A.4.3);

d) A 4 B POSIX time stamp, taken by the network with a grain of salt
corresponding to the absence of clock synchronization;

e) A 4 B base 256 scienti�c notation encoded (see Appendix A.4.2) target.
The hash of the header must be below that target;

f) A 4 B nonce, used as a space to search for a valid block hash.

2. A compact size unsigned integer count of transactions;

3. The transactions, in the same order as in the Merkle tree.

A block is valid if it passes a validity check described in Appendix A.4.4.

A.4.2 4-byte long base 256 scienti�c notation

Miners compact the target threshold in a 4-byte signed integer encoding represent-
ing a 32-byte unsigned integer. The expansion works as follows: the �rst byte is
extracted as the exponent, and the last 3 bytes are the mantissa. It is shifted by
exponent−3 bytes to the left, where a negative shift to the left corresponds to the
opposite shift to the right and the −3 comes from the fact that the mantissa is
already a 3-byte long number. As a safeguard, if the most signi�cant bit of the
mantissa is set (i.e. if the mantissa is negative in a signed integer representation)
or the number is bigger than 2256 (which happens e.g. if the exponent is bigger
than 34), it is replaced by 0. However, Core does not prevent under�ow: it regards
0x020001ff as a valid representation of 1.

The best compaction for a 256-bit long number a (the one introducing the small-
est rounding error, used by the reference client) consists in shifting bytes so that
a's most signi�cant non-null bit ends up in its third least signi�cant byte, adding
as many leading or trailing zeroes as needed, keeping only the three least signi�cant
byte and prepending them with the appropriate exponent. The rounding error is
the number represented by the bytes that are shifted out. Figure A.3 illustrates
compaction and extension.

Let us denote by f the function that expands a 4-byte number into a 32-byte
one, and f−1 that which performs the compaction.

De�nition 20
a ∈ {0, 1}256 is said to have an exact encoding if and only if f(f−1(a) = f−1(f(a)) =
a, that is if it is possible to represent a in 4-byte long base 256 scienti�c notation
without rounding it.

De�nition 21
a ∈ {0, 1}32 is said to be a licit encoding if and only if its expansion does not over�ow
and the highest bit of its mantissa is set to 0. Conversely, it is said to be illicit if it
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Figure A.3: From 256 bits to 32 and back again: the 4-byte long base 256 scienti�c
notation. The gray line separates compression (upper half) from extension (lower
half). Compression consists in storing the 31-complement of the number of leading
zero bytes as the most signi�cant byte of the compact form and then copying the
next three bytes. Extension consists in copying the three least signi�cant bytes into
a position speci�ed by the most signi�cant one.

is not licit, and their compaction is 0 by convention. We denote by S the set of licit
encodings.

Let us also index bits by increasing signi�cance: the least signi�cant bit is bit 0,
and the most signi�cant bit is 255 or 31 depending on whether the number is a 256 or
32-bit long one. It is obvious that f is not surjective: its domain is �nite and smaller
than its codomain. Its image is actually smaller than 32 bit: all numbers with bits
23, 30, or 31 set are illicit and have the same image. This gives a 29-bit upper
bound, which is strict since two di�erent numbers can have the same expansion (e.g.
0x04000001 and 0x03000100 which are both equal to 256). Property 6 gives the
exact size of the image of f .

Property 6
The transformation from 4 to 32-byte long integers using the base 256 scienti�c
notation has an image of size 229 − 228 − 221 − 216 − 29 + 5 = 266, 272, 261 ≈
0.496 ∗ 229 ≈ 228.

Proof. First, illicit numbers compacted to 0 include all those with bit 31, 30, or
23 set: this leaves only 229 numbers. They also include the 29 ∗ 223 numbers with
exponent between 35 and 63 (both included), the (27−1)216 with exponent equal to
34 and at least one bit set among the 7 least signi�cant bits of the most signi�cant
byte of the mantissa and the (215− 1)28 with exponent equal to 33 and at least one
bit set among the two most signi�cant bytes of the mantissa except bit 23, all of
those for over�ow reasons (their most signi�cant bit would have an index greater
than 256 after transformation).

Let a, b ∈ S, b3 6 a3, b 6= a, where xi is the i-th byte of x using the same indexing
convention as for bits (thus, the exponent is byte 3).
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We draw the following result from the uniqueness of the decomposition of a
number in base 256, where (x2x1x0) = x22562 + x1256 + x0:

f(a) = f(b)⇔(a2a1a0) ∗ 256a3−b3 = (b2b1b0)

⇔


ai = 0 ∀i, 3− (a3 − b3) 6 i 6 2

bj = 0 ∀j, 0 6 j 6 a3 − b3 − 1

ai = bi+a3−b3 ∀i, 0 6 i 6 3− (a3 − b3)

We get a3−b3 = 0⇔ (f(a) = f(b)⇔ a = b). Hence, in the following, we replace
b3 6 a3, b 6= a by the equivalent b3 < a3, b 6= a.

Thus, a2 6= 0⇒ @ b ∈ S, b3 < a3, b 6= a, f(a) = f(b).
Let a2 = 0, a1 6= 0. Then we have a3 − b3 = 1 and thus if a3 > 0, !∃b that meets

our requirements, that is b = (a3 − 1)2563 + a12562 + a0256, which indeed satis�es
b ∈ S. This decreases the size of f 's image by 28(28 − 1)33: for each of the 33 licit
exponents (1 to 33, both included since no bit is set in a2 but one is set in a1), a0
can be anything and a1 can be anything but 0.

Let now a2 = a1 = 0 6= a0. Then we have a3 − b3 ∈ {1, 2}. The b's such that
f(a) = f(b) are either (a3 − 1)2563 + a0256 or (a3 − 2)2563 + a02562, valid only
for a3 > 1 and 2 respectively. However, we have already counted both of those
when a3 > 2: the former is one of the a's of the previous case, and the latter is the
corresponding b. We thus need to count the a's of this group, and the b's only when
a3 = 1 (because this case did not arise in the previous case): there are respectively
34(28 − 1) and 28 − 1 of them.

Finally, we exclude the licit representations of 0 as well: they comprise numbers
with all bits of the mantissa set to 0 (34 choices of exponent), with exponent equal
to 2 (28 − 1 choices of least signi�cant byte, the other two are equal to 0), equal to
1 (216 − 1 choices for the two least signi�cant bytes, the other one is equal to 0),
or equal to 0 (223 − 1 choices for the mantissa, given that its highest bit is always
zero), where the −1's come from the fact that we have already counted a mantissa
equal to zero. We have to include one of them back, though, because otherwise we
would have excluded all pre-images of 0.

We derive the result by summing all of these terms, expanding them and using
32 = 25.

What this means is that this encoding sacri�ces seven eighth of its size to gain
the ability to store numbers with a very large amplitude (from 0 to

∑22
i=0 2232+i =

2255 − 2232). The numbers that have exact encodings all share a similar form: the
index di�erence between their most signi�cant non-null bit and the least signi�cant
(possibly null) bit of their least signi�cant non-null byte is at most 22. The equality
case corresponds to those number that have exactly one exact encoding; the numbers
falling in the strict inequality case have di�erent equivalent exact encodings.
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This happens because of the weak de�nition of 4-byte-long base 256 scienti�c
notation: contrarily to the usual scienti�c notation, there is no constraint for the
most signi�cant byte of the mantissa not to be zero, even though the reference
client tries to apply that logic. However, it would be pointless to enforce such a
rule: it would either require more work from the stores to validate block headers (as
negligible as that amount of work would actually be), or that they trust the network
input to be correct, while the only sane assumption is that any input is incorrect
or malicious until proven otherwise. Furthermore, stores reject block with a target
di�erent from the one they expect: only the decoded 256-bit-long target actually
matters to them.

Finally, the rounding error is manageable: let ai = 2i +
∑j=i−17

j=0 2j ∀i ∈ 8N, i 6
255, that is the number with the least signi�cant bit of byte i/8 and all the bits
from all the bytes of index at most i/8− 3 set, and all the other bits equal to 0. In
this case, the relative rounding error ∆f−1,ai is:

∆f−1,ai =
ai − f(f−1(ai))

ai

=

∑j=i−17
j=0 2j

2i +
∑j=i−17

j=0 2j

∆f−1,ai =

{
0 if i 6 16

2i−16−1
2i(1+2−16)−1 if i > 16

It is clear that ai maximizes the relative rounding error over {0, 1}8+i: the best
mantissa is as small as possible while the number of bits that are shifted out is as
large as possible2. It is monotonic and increases with i, with a limit of 1

216+1
=

1
65537 ≈ 1.5 ∗ 10−5 for i → ∞3. This means that even though rounding down the
target makes it harder for miners to �nd blocks, the e�ect is barely noticeable (and
a�ects all miners the same way, which is an essential fairness requirement).

A.4.3 Merkle tree

Bitcoin uses Merkle trees [Mer88] to allow veri�cation of the entire list of transactions
included in a block using only 256 bits in the block's header. The Merkle tree of
a list of n transactions is an unbalanced binary tree with n leaves at its deepest
level, kn = dlog2(n)e, which are the hashes of the transactions. Algorithm 1 is a
pseudocode description of how to build the entire tree; basically each node is the
double SHA-256 hash of the concatenation of its two children.

Bitcoin uses this structure because it is very e�cient. Thus, in order to verify
that a given transaction of interest is one of the tree's leaves, one only needs a

2Given that the domain of f−1 is �nite, it could be rigorously proven by computing the relative
rounding error for each possible input.

3This limit does not actually make sense in our setting because i is upper-bounded by 248 but
it is good enough an upper bound to get the idea.
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Algorithm 1 How to build a Merkle tree from an ordered set of transactions. h is
the double SHA-256 hash function and || is the concatenation operator.

1: procedure Build(t0, ...tn−1) . Build tree containing transactions t0...
2: maxDepth← dlog2(n+ 1)e
3: for i← 0, .., n− 1 do . Initialise the leaves
4: Create leaf hmaxDepth,i = h(ti)

5: for k ← maxDepth− 1, ...0 do . For each level
6: for i← 0, ..., 2k do . For each node
7: if hk+1,2i, hk+1,2i+1 have been de�ned then
8: Create node hk,i with value h(hk+1,2i||hk+1,2i+1) and children
hk+1,2i and hk+1,2i+1

9: else if hk+1,2i has been de�ned then . Unbalanced tree with uneven
number of nodes.

10: Create node hk,i with value h(hk+1,2i||hk+1,2i) and child hk+1,2i

11: break
12: else . Unbalanced tree with even number of nodes.
13: break
14: return the generated nodes

number of elements that is logarithmic in the number of transactions included in
the tree: the two children of each node on the path from the transaction to the root.

However, the receiver of such a message needs to know where those hashes belong
in the tree, otherwise the transmission is meaningless. Bitcoin uses bit �ags for this,
using a depth-�rst traversal of the tree: this increases the size of the transmission
by dh8 e + cmpct(dh8 e) bytes, where h is the number of transmitted hashes. When
the sender provides a single hash (which happens only when a block only contains a
coinbase transaction), this only increases the size of the transmission by a factor of
1
16 (2 bytes for a 32-byte hash), and it decreases even further when there are more
hashes involved.

The �ag bits are a boolean evaluation of the question �does the subtree rooted
at this node needs further exploration?�. Algorithm 2 is a pseudocode summary of
how the reference client4 produces the lists of �ags and hashes needed to verify that
a Merkle tree of given root contains a certain set of transactions, while Algorithm 3
summarizes how to use a list of hashes and �ags to verify that a tree has a given root.
From that point, one only needs to verify that the transactions of interest appear at
the right place in the list of hashes to be sure that the tree contains them. Figure A.4
displays an example of Merkle tree for a block with 7 transaction and highlights the
hashes needed by someone who would like to verify the presence of transaction t3.
It shows which four of them su�ce to recompute the root (included in the block's
header) while making sure that it contains t3's hash, assuming SHA-256's collision

4As it sends these structures over the network, any other procedure must give the exact same
result to be valid in this context.
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resistance.

Algorithm 2 Depth-�rst traversal of a Merkle tree to determine which hashes are
needed to verify that the tree contains a set of transactions; the pseudocode takes an
object-oriented approach, assuming that the nodes of the tree are accessible through
their position described as (depth, index at depth).

1: procedure Compact(t0, ...tp) . Select the hashes and �ags to verify that a
given tree contains transactions t0, ...tp.

2: �ags ← empty bit vector
3: hashes ← empty hash vector
4: CompactRecurse((0, 0), t0, ...tp, �ags, hashes)
5: return hashes, �ags converted in a list of bytes by padding the end of the

bit vector with enough zeroes to reach a size that is a multiple of 8.

6: procedure CompactRecurse((i, j), t0, ...tp, �ags, hashes) . Determine �ag
corresponding to node i, j and whether its value is necessary or redundant

7: if the subtree rooted by node (i, j) contains at least one of t0, ...tp then
8: Append bit set to 1 to �ags
9: else . The subtree is not useful here.
10: Append bit set to 0 to �ags

11: if node (i, j) is a leaf or the subtree that it roots does not contain any of
t0, ..., tp then

12: Append its value to hashes and return
13: else . Recurse through the subtree to �nd exact location of useful

information
14: CompactRecurse((i+ 1, 2j), t0, ...tp, �ags, hashes)
15: if node (i+ 1, 2j + 1) is de�ned then
16: CompactRecurse((i+ 1, 2j + 1), t0, ...tp, �ags, hashes)

17: return

However, Merkle trees are vulnerable to duplication attacks: if the number of
transactions is not a power of 2, then the binary tree is unbalanced and some in-
termediate nodes are computed as the double hash of the concatenation of its only
leaf with itself. An attacker can leverage this to include the transactions such that
this node gets two identical children; this leaves its hash, and thus everything above
it, unchanged even though the deepest level of the tree is di�erent. Bitcoin shields
itself against this by considering as invalid any tree containing a duplicate hash.

A.4.4 Validity check

Just as transactions, blocks are veri�able by the network. Let Alice be a store, b
a block she has just received and t0, ...tn its transactions. In this section, we use
�below� to mean �less than or equal to�.

First, she goes through a check-list of context-independent veri�cations:
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Algorithm 3 Depth-�rst traversal of a Merkle tree to verify that it includes the
input hashes at positions speci�ed by the input �ags; the pseudocode takes an object-
oriented approach, assuming that the nodes of the tree are accessible through their
position described as (depth, index at depth).

1: procedure Verify(count, hashes, �ags, root) . Verify that the tree
made of count transactions with speci�ed hashes at position speci�ed by �ags
has the given root.

2: Build empty Merkle tree with count leaves
3: Verify that root = VerifyRecurse((0, 0), �ags, hashes)

4: procedure VerifyRecurse((i, j), �ags, hashes) . Compute hash of node
(i, j)

5: f ← pop(�ags) . pop removes and returns the �rst element of its input.
6: if f = 0 or node (i, j) is a leaf then
7: return pop(hashes)
8: else
9: left ← VerifyRecurse((i+ 1, 2j), �ags, hashes)
10: if node (i+ 1, 2j + 1) is de�ned then
11: right ← VerifyRecurse((i+ 1, 2j + 1), �ags, hashes)
12: else
13: right ← left

14: return h(left||right) . h is the double SHA-256 hash function

1. She veri�es its header:

a) b's PoW must be valid: the target must be below its upper bound (set
to 2224 − 1 on the main network) and the block hash must be below the
target;

b) b's time stamp must be less than 2 hours younger than the current network
time, computed using the median o�set of some of Alice's neighbours;

2. She veri�es its Merkle root and that the Merkle tree does not include duplicated
transactions

3. b's serialization must be at most 1MB and it must contain at least one trans-
action;

4. b's �rst transaction must be a coinbase transaction and none of the others can;

5. each of b's transactions must pass the context-independent transaction validity
check (see Appendix A.3.4);

6. b's transactions must not contain more than a total of 20 000 script signature
operations;
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h0,0(h1,0||h1,1)

h1,1(h2,2||h2,3)

h2,3(h3,6||h3,6)

h3,6(t6)

h2,2(h3,4||h3,5)

h3,5(t5)h3,4(t4)

h1,0(h2,0||h2,1)

h2,1(h3,2||h3,3)

h3,3(t3)h3,2(t2)

3:
0 4:

1

h2,0(h3,0||h3,1)

h3,1(t1)h3,0(t0)

1:
0 2: 1

0: 1 5: 0

h3,j(tj) Leaf j

hi,j(x) Hash needed to verify the tree

k: l
Flag k represent this edge and has value l

Figure A.4: Example of Merkle tree for a list of 7 transactions, where hi,j(·) is a
shorthand for hi,j = h(·) and h(·) is the double SHA-256 function. In this example,
the sender would send h2,0, h3,2, h3,3, h1,1, the bits 101010 (padded with 3 trailing
zeroes to occupy an integer number of bytes) and t3 along with the block header to
let the receiver verify that the block contains t3.

Then, she checks if she should accept the block, which includes the following
checks:

1. she checks the validity of b's:

a) b's hash is not that of a known invalid block;

b) b's header is valid (exactly as in item 1 of the context-independent checks);

c) Alice knows p(b) and considers it valid;

d) b is not trying to get inserted in the blockchain before the last checkpoint
(see Appendix A.5);

e) b passes the contextual header checks:

i. b's target must be exactly what Alice expects

ii. b's time stamp must be ulterior to the median of the previous 11
block time stamps

iii. b's version must be strictly greater than 4

2. Alice must either have requested b or it must be better than her current tip
and not be more than 288 blocks higher in the blockchain. In case Alice has
previously received it, she only goes on if she requested it (e.g. because she
has pruned it);
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3. b must pass (again) the context-independent validity checks;

4. b must pass the contextual validity checks:

a) all transactions must be �nal (see Appendix A.3.2);

b) the coinbase transaction must start with the block height

At this point, if everything went �ne, Alice has accepted and stored the block and
only need to change the tip of her blockchain, if appropriate. Before adding new
blocks, she �rst removes all those that are no longer in the main branch (which
happens only if the previously loosing branch of a fork just (temporarily) won the
race and became the longest one). Then, for each block newly accepted in the main
branch (that we will all denote b for a sake of simplicity and because the most
common scenario is that the newly received block was not involved in a fork), she
goes through the following check-list:

1. b must pass the context-independent validity check;

2. b's parent must be the current tip;

3. b must not contain any transaction with the same hash as one previously
included in the blockchain5;

4. b's transactions must not contain more than a total of 20 000 script signature
operations;

5. All of b's transactions' inputs must be available (i.e. known and unspent);

6. When relative locks (see Appendix A.3.2) are active, they must be unlocked
for each of b's transactions;

7. All of b's non-coinbase transactions' must pass the input-related check list
described as item 17 of the context-dependent transaction validity check6 (see
Appendix A.3.4);

8. b's coinbase transaction must have an output value below the block reward
(fees included);

After each successful completion of the check list, Core throws away the in-mempool
transactions con�icting with the block (consuming an input already consumed by
another transaction it contains) and updates a lot of housekeeping variables.

When the iteration is over, Alice has �nished validating data and can switch
back to networking, as detailed in Appendix C.

5There are two exceptions to this rule: blocks at height 91 842 and 91 880 each duplicated a
previous coinbase transaction, which prevents the spending of the �rst instance.

6With a twist: script veri�cation is actually performed in the background by another thread,
joined after the next item.
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A.4.5 Initial block download

Initial block download is an operation performed by nodes at initialisation to catch
up on the state of the blockchain. It happens either when the node �rst joins the
network with an empty database, when its blockchain tip is more than 24-hour old
or when the tip of its blockchain is more than 144 blocks (24 hours worth of blocks)
behind its chain of headers.

Let Alice be a node initialising her blockchain, with Bob and Carol as neighbours.
She starts by picking one of them: if possible, an outbound connection to a full node,
but if no such connection exists, an inbound one to a full node su�ces. She then
sends this selected neighbour a getheaders message requesting for all headers after
(and including) Alice's current best one. As soon as she gets the response, she can
run three operations in parallel: keeping asking for more headers until the response
is not full (that is, contains less than 2000 headers), indicating that she has reached
her neighbour's tip, validating the headers to initialise the chain of headers, and
request the blocks corresponding to the headers she has validated.

She only asks one neighbour for all headers until the best header she has is less
than 24-hour old, at which point she asks all of her neighbours to con�rm that the
one she downloaded from was up to date and not feeding her an illegitimate chain.
However, since blocks are much heavier than headers, she distributes the block

requests between all of her neighbours to avoid being slowed down by a neighbour's
upload speed or to saturate their upload quotas.

Finally, if she detects that a neighbour supposedly feeding her headers or blocks
takes too much time, she drops the connection to try and �nd a more e�cient node
in the network.

A.5 Blockchain

Before anything else, the blockchain is a database: each store uses it to maintain a
record of all the transactions accepted by the system in the form of blocks to ensure
that they all agree on their sequential ordering, and most of Bitcoin's operations
manage it locally (query for or insert data and ensure integrity) or distribute it
(exchange data with neighbours). As any huge database management system, it
resides partly on the store's hard drive and partly in main memory; the way Bitcoin
Core (or any other client) performs indexing, information retrieval and long-term
storage is both complex and completely out of the scope of this work.

The structure of chain derives from blocks linking to their parent: from any
block, one can iteratively follow all the �previous block� pointers until reaching a
block without one, which is the starting point of the chain including the starting
block. However, the other direction shows a di�erent situation: nothing (struc-
turally) prevents a block from having two (or more) children, leading to an actual
tree structure. This is the fork phenomenon. When this happens, each rational
blockchain store de�nes its main branch as the heaviest path it knows in the block-
chain, where the weight of a path is the sum of the di�culties of all the blocks it
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includes. The genesis block 000000000019d6689c085ae165831e934ff763ae46a2a6

c172b3f1b60a8ce26f roots all valid paths, which can only go from a block to one
of its children and not the other way around. Using the weight instead of the length
of a branch prevents attackers from preparing a very long chain of easy blocks and
feeding it to the network.

Since nodes only accept transactions compatible with the history described by
their main branch, forks are solved when a branch becomes heavier than its com-
petitors and all nodes accept it as their main one; after some time, necessary to be
reasonably sure that no miner works on extending a losing branch, nodes can prune
it from the tree that is the database. Another attack could be to work on a very
early fork (say, diverging from the main branch right after the genesis block) without
feeding it to the network before it gets longer than the main branch. To prevent this,
Bitcoin Core used to hard-code some checkpoints in the blockchain: each Core store
knows the that the commonly accepted block at height 295 000 has hash 000000000

00000004d9b4ef50f0f9d686fd69db2e03af35a100370c64632a983 and that its time
stamp corresponds to Wednesday, April 9th, 2014 at 21:47:44 GMT. However, it is
also the last checkpoint: Core dropped the system because the community consid-
ered it a threat to Bitcoin's decentralisation and assumes that it would be in�nitely
more pro�table for an attacker that could pull o� this attack with non-negligible
probability to simply devote his computing power to mining on the main branch.

A.6 Bitcoin address

Bitcoin addresses are a way to encode public key hashes that is more secure by
including error detection codes allowing a user to be sure that she is not sending
funds somewhere else than where she thinks.

To do this in a way that is compact but not error prone, Bitcoin de�nes the base
58 encoding, whose characters are numbers from 1 to 9 and lower and upper case
letters except for �O�, �I�, and �l�; that is, base 62 (regular English characters) without
the two pairs of characters that may be hard or even impossible to distinguish when
printed in certain fonts.

An address is computed as follows: �rst, the public key is hashed to 160 bits
(using the regular SHA-256, RIPEMD-160 double hash). Then, the su�x 0 is added,
and the whole message of 21 bytes is double SHA-256 hashed. The �rst 4 bytes of
this second hash are added as a su�x, to be used as a checksum. Finally, the 25
bytes are converted to base 58 encoding.

In the process, the leading zeroes are treated in a peculiar way: they are counted
and skipped. After the conversion of the rest of the string, as many �1� as there
were zeroes are pre�xed, which explains why all Bitcoin addresses start with �1�.

One can also encode the address of a script instead of a key, for a pay-to-script-
hash scriptPubKey. The procedure is the same, except that the su�x added is 5,
converted to 3 in base58.
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A.7 Network address

Bitcoin addresses refer to users, but Bitcoin routers need to �nd each other over
the Internet to form the network. Very naturally, they use network addresses, each
of which mostly consists of an IP address and port number pair. Bitcoin supports
128-bit long IPv6 addresses, and to avoid having to handle two di�erent lengths
IPv4 addresses are mapped to IPv6 ones of the form ::FFFF:0:0/96 (that is, 80
zeroes, 16 ones, and the 32 bits of the IPv4 address) as per RFC 4291 [RFC4291].
Tor [DMS04] is also supported.

However, Bitcoin also adds two less common pieces of information to network
addresses: a bitmask of the services supposedly provided by the peer (see Ap-
pendix D.3.1) and a time stamp that each node updates based on very peculiar
rules from the very moment it discovers the address.

To describe them, let Alice be a node who hast just received an addr message
from a neighbour. In all this section, Alice's clock (and time) actually refer to her
adjusted time: she modi�es the UNIX time stamp of the device she runs on by an
o�set computed using some of the version handshakes she has performed. After
the usual sanity checks, she decides to store the addresses in her address manager.
For each address a, she checks the associated time stamp that Bob included in the
message. If it is prior to 108 (Saturday, March 3th, 1973 at 09:46:40 GMT) or if it is
more than 10 minutes in the future for Alice's clock, she replaces by her current time
aged by one day. If the address is reachable, she adds it to her address manager; in
the process, she ages the time stamp by 2 hours.

The address manager de�nes the update period of the address' time stamp to
be either one hour is the time stamp is less than 24-hour old when added, or 24
hours otherwise: Alice will only update the time stamp when she receives again the
address with a greater time stamp than the one she has plus this update period and
the 2-hour penalty. In other words, she only updates the time stamp if it makes it
move by more than the update period. As usual, there is a catch: if Alice manages
to establish a connection with that address (no matter its direction), she updates
its time stamp to her current time if the time stamp is more than twenty minutes
old.

When advertising addresses (unsolicited or in response to a qetaddr query),
Alice includes the time stamp she has for each of them; there is no �nal trick.

A.8 Bloom �lter

A Bloom �lter [Blo70] is a regular computer science probabilistic data structure used
to check if an element is part of a set. There is a bias: it may generate false positives
but no false negative: it answers �de�nitely not� or �probably yes�. The rate of false
positive depends on the size of the �lter and the number of elements in the set.

Bitcoin uses them speci�cally for determining if transactions are of interest to
SPV nodes, with two goals in mind: making sure that SPV nodes use as little
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resources as possible while somewhat preserving their privacy.
Sending only transactions of interest to SPV nodes helps them avoid consuming

resources to receive and validate �useless� data. However, at the same time it gives
away all of their Bitcoin addresses to their neighbours, which endangers Bitcoin's
pseudonymity. Thus, a structure that never underestimates the importance of a piece
of information but sometimes overestimates it is particularly well suited, especially
if it is space and time e�cient, which the Bloom �lter is.

However, given that wallets should not reuse addresses, �lters need to be updated
every time they �nd a match to include the new address of interest. The filterload
message con�gures how and who performs this. It can be left to the full node to
update the �lter to match against all outputs of every matching transaction: this
will slowly but steadily make the rate of false positive grow (because the �lter has
a �xed size) but will not leak any more information than loading the initial �lter.
He can also never update it and wait for the SPV node to send him filteradd

messages, which de�nitely leaks information as the elements to add to the �lter
are not obfuscated (and still slowly increases the rate of false positive, though at a
slower pace). Finally, the SPV node can also send an entirely new �lter through a
filterload message (which does not need to follow a filterclear one) every time
it needs to be updated. The main downside of this approach is that it consumes
more resources to recompute and resend the �lter every time it needs to be updated.



Appendix B

scriptPubKey and scriptSig

Bitcoin uses a non-Turing complete scripting language1 simply called Script to de-
termine whether a transaction is actually allowed to use its inputs. It is stack based
and a script is valid if it can go through its entire execution without failure and leave
the stack with a top value di�erent from (negative) zero. A transaction is valid if all
of its input scripts are valid. However, Core considers certain scripts non-standard
and does not relay them outside of a block (thus, it is up to the emitter to make
sure it reaches miners) even if they can be valid with the right signature script. As
described in Appendix A.3.1, transactions include two types of scripts: each output
contains a scriptPubKey and each input a scriptSig. However, both kinds use the
same language: the di�erence is only made to separate the parts provided by the
emitter and the redeemer of a given coin.

Rather than going through the 256 opcodes (Script commands) and produce an
extensive guide to Script, this appendix gives �rst a general idea of the kinds of
operations that Script de�nes, followed by an example of how a speci�c transac-
tion was spent (and how said transaction did not follow some of Bitcoin's security
recommendations). Most of its content is adapted from the Script page of the Bit-
coin Wiki [BW] and from the source code of version 0.12.1 of the reference client,
speci�cally src/script/script.h

The opcodes can be grouped in several categories based on their action on the
stack:

Value-pushers Push a variable number of items on the stack;

Branching conditions Classic if then (else) endif structure, along with ways
to mark a transaction as invalid;

Stack operators Modify the stack by duplicating, erasing, or moving data around;

Splice operators Most of these are disabled, which make the script fail if present;

1It purposely does not contain loops. Ethereum [But14] is an example of altcoin that changed
this.

96
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Bitwise operators Most of these are disabled as well, those left can however check
equality between two items;

Arithmetic operators Perform several arithmetic operations such as additions or
comparisons;

Cryptography Perform cryptographic operations such as computing hashes or ver-
ifying signatures;

Expansions Ten No-operation words have been de�ned, out of which two have
been rede�ned to check the validity of the transaction lock time.

Using carefully selected operators in those categories, one can enforce that only
the intended recipient of a transaction can use its output as an input for a new
one. The most usual way to do this is through the pay-to-pubkey-hash, which
we describe in the �rst part of the following example, examining the two outputs
of transaction 3a6ffefa2be34b63ebcdadfeadb4d2cb3a76f625f35d38907b6b8355

dccce874 (3a6f in the following), from block 424 151. Its two outputs contain
the following scriptPubKey, where we add white spaces to separate the di�erent
components of the scripts:

1. OP_DUP OP_HASH160 c6b3edff7379d3f58146e457110f1c4ab7d50eb6

OP_EQUALVERIFY OP_CHECKSIG

2. OP_HASH160 6883100c446c4652bf40030166c25bf432f75ceb OP_EQUAL

We denote by hash1 and hash2the two hashes in the following.
Its �rst output was spent as the �rst input of transaction b6c79b3935697b9fdbb

6b88040442a1b669c73b91339661d0bbdb23721853c42, from block 424 238. The cor-
responding ScriptSig (script included in the spending transaction to collect and use
the funds) comprises two components: �rst, a signature (304402205ac8a31667895
f36bf23f85e518b4f6102f33555d8ed15e421d08d35d679d08302204c7af33bebd58f

0539bbf831ab69281e3f17e9cc7c1e5caa21ee4dda773d6eb701), denoted sig in the
following, followed by the corresponding compressed public-key (03d42179014ca72
d9f0c1ee8dda35dd3ccde55d2a66cf403afcee9b6c66ddfd656), denoted pubkey in
the following. The script to execute is the concatenation of the input script and
the output one, giving sig pubkey OP_DUP OP_HASH160 hash1 OP_EQUALVERIFY

OP_CHECKSIG, where the value-pushing opcodes have been omitted before each of
the three constants. Table B.1a shows its execution.

The operation performed when reading OP_EQUALVERIFY veri�es that the public
key provided by the spender corresponds to the address the input refers to by de-
riving the latter from the former. Then, OP_CHECKSIG uses the public key to verify
the ECDSA signature.

The second output was spent as the only input of transaction 6539831e3fd179

4f5a0e56ea7bc5cada9c39325c6f62bdd93907a8e7103e68bd, from the same block.
The corresponding scriptSig contained two elements: OP_FALSE and 215 B of data
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Read from script Operation performed Resulting stack

sig pubkey Push constants on stack sig pubkey

OP_DUP Duplicate top stack item sig pubkey pubkey

OP_HASH160 Hash using SHA-256 and
then RIPEMD-160 top stack
item

sig pubkey hash(pubkey)

hash1 Push constant on stack sig pubkey hash(pubkey)

hash1

OP_EQUALVERIFY Consume and compare top
two stack items. If di�erent,
fail the script

sig pubkey

OP_CHECKSIG Check if second-to-top stack
item is the signature of the
transaction made by top
stack item. Push result of
the check on stack

1

<empty> If top stack item is not 0,
script is valid. Otherwise,
fail

Script has returned

(a) Execution of the script spending the �rst output of 3a6f.

Read from script Operation performed Resulting stack

OP_FALSE data Push constants on stack 0 data

OP_HASH160 Hash top stack item to
160 bit

0 hash(data)

hash2 Push constant on stack 0 hash(data) hash2

OP_EQUAL Test equality of the top two
stack items and push the re-
sult on stack

0 1

<empty> If top stack item is not 0,
script is valid. Otherwise,
fail

Script has returned

(b) Execution of the script spending the second output of 3a6f.

Table B.1: Examples of script executions. In each table, the �rst column indicates
what the Script interpreter read from the script, the second one describes the oper-
ation performed, and the third one the state of the stack after the interpreter has
executed said operation, where the leftmost item corresponds to the bottom of the
stack.
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that will simply be denoted data. Thus, the veri�cation script is OP_FALSE data

OP_HASH160 hash2 OP_EQUAL; Table B.1b shows its execution.
However, this second output breaks a security recommendation. It is known

as a transaction puzzle, where the only thing needed to claim the funds is to �nd
some arbitrary data that is hashed to a given value. It does not include signatures
and thus, it can be easily spoofed if it is broadcast before a miner includes it in a
block: anyone receiving that transaction can create a con�icting transaction that
uses the same input to transfer the funds to another address and broadcast the latter
instead. This is a somewhat unusual double-spend setting because the attacker is
a third party rather than the buyer, but it looks exactly the same to the network.
Incidentally, there is another major security issue with that transaction which is
linked to address reuse and is thus out of scope here.



Appendix C

Networking speci�cation

There are (at least) four types of networking related to Bitcoin: the interactions
between nodes through the peer-to-peer network, the interactions between nodes
through specialized parallel networks (e.g. inside mining pools), the interaction be-
tween a user and its wallet (e.g. to check if a transaction has been con�rmed), and,
�nally, the interactions inside the community (e.g. through the community-driven
development process). The last two are out of the scope of this document, and the
second only has some importance when describing some rational or even malicious
behaviours found in the network, in Section 2.3.5.

This appendix builds upon the developer reference and documentation [Ref;
Doc] whose claims were checked against the source code of version 0.12.1 of Bit-
coin Core [Core], to describe the networking behaviour of the reference client. Many
complementary details and �gures, such as the byte-level description of all types of
messages, can be found in Appendix D. A number of operations performed by Core
are not mentioned here, mostly because they are either validity checks (e.g. verifying
that a peer runs a protocol version that supports an operation before sending it the
corresponding request) or synchronization control between multiple threads.

All Bitcoin messages share some similarities: they are exchanged over TCP and
have the same header. The payload, or absence thereof, depends on the mes-
sage type. More details are given in Appendix D.1. Appendix C.6 describes the
multi-threaded infrastructure used by nodes to exchange messages over the net-
work. When, in the following, a node is said to broadcast a message, it actually
hands it out to this structure, which takes care of sending it.

C.1 Connection management

Alice has three connection modes: default, connect, and addnode. In the default
mode, she constantly tries to establish new connections based on her database of
addresses: a speci�c thread uses two while(true) loops to choose a candidate
neighbour and try to contact it. In the outer loop, it sleeps for half a second,
computes the set of subnets containing a neighbour of Alice, lets the inner loop �nd
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an appropriate address in the database and, �nally, tries to establish a connection
with it if the inner looper succeeded.

To select an appropriate address, the inner loop randomly picks in Alice's data-
base and checks several conditions: the candidate address must be valid, not belong
to the same subnet as any already established neighbour, not be a local address,
not belong to a subnet that the user has blacklisted, the corresponding node must
be known to provide the minimum required network services1, must not have been
tried for at least 10 minutes unless the loop has made at least 30 unsuccessful itera-
tions and must use the default port (8333 for the main network) unless the loop has
made at least 50 unsuccessful iterations2. The implementation actually also enforces
that the address must be known to provide the network services relevant to Alice
unless the loop has made at least 40 unsuccessful iterations but those are exactly
the minimum required services and this test is currently redundant. The process of
randomly picking an address is detailed in Appendix C.2.

The connect mode is actually simpler: when the user speci�es a set of addresses
to connect to, Alice's connection thread constantly loops over this set to try and
establish connections, using a bounded linear back-o� mechanism to wait up to 5
seconds between two consecutive connection attempts.

Finally, in the addnode mode, Alice runs two connection threads. The �rst one
runs according to its mode of operation as described above and a second one loops
over a user-speci�ed set of addresses and behaves almost as the connect mode, the
most notable di�erence being in the sleeping periods (0.5 s between each connection
attempt and 2 minutes between each iteration over the set of addresses).

When a connection has been established, most messages can be sent by any of the
two endpoints. The main exceptions to this rule are the version and getaddress

messages, whose asymmetry are speci�ed in their descriptions, respectively hereafter
and in appendix C.2.

As soon as Alice has established an outbound connection to Bob, she sends
him her version message, whose payload is described in Appendix D.3.1. Upon
reception, Bob decodes it to determine if he wants to maintain the connection and
how it should be handled. Thus, he drops it if Alice's protocol version is obsolete
or if the random nonce is equal to one he has just sent (indicating that he is trying
to connect to himself), and the message is rejected if Alice had already sent one.
He determines whether Alice wants him to load a Bloom �lter to relay transactions
(see Appendix C.4), updates the set of addresses on which he can be reached (which
can be useful when Bob is behind a NAT and does not know it), sends back both
his version and verack messages, checks whether Alice is a full node or only runs
in SPV mode (see Appendix C.4 as well), takes note of the protocol version to use
for this connection, and potentially marks Alice's address as good in his address
manager (see Appendix C.2) and recomputes the median network time o�set, the

1That is, it must be able to propagate blocks and transactions.
2This is to mitigate a DoS attack that could be performed by advertising the address and port

of a server not related to Bitcoin.
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median of the o�sets between his local clock and a subset of the time stamps it has
received in version messages. This o�set is used in many occasions to check the
validity of time stamps.

Then, Alice handles slightly di�erently Bob's version message: she also veri�es
that their protocol versions are compatible, that Bob only sent it once, whether he
wants her to load a Bloom �lter and whether he is a full node. If so, Alice marks
him as one of her preferred download peers, under the assumption that Bob has less
chances of being a malicious node if he was already in the network and she had to
contact him to establish a connection than if he contacted her. She also makes sure
to use the right protocol version for this connection, sends him both a verack and
a getaddress message and marks his address as good in her address manager and,
�nally, recompute the median network time o�set.

Reception of the verack message does not depend on the connection orienta-
tion: in both cases, the receiver marks the sender as connected as sends back a
sendheaders message. When receiving a sendheaders message, nodes change the
way they advertise blocks to the sender, as described in Appendix C.3.

Every two minutes, Alice sends a ping message to all of her neighbours, each
containing a random nonce. When Bob receives it, he sends back a pong message
containing the same nonce. When she receives it, Alice updates her knowledge of
the round-trip time (RTT) between Bob and her if the nonce matches the one she
sent, which may not be the case (e.g. when Bob's pong is the response to an older
ping). This exchange also serves as a keep-alive for the connection.

The last part of connection management is termination. Bitcoin does not imple-
ment any equivalent to TCP's FIN handshake, which means that nodes are never
informed that a neighbour has closed the connection. There are a few reasons why
Alice may want to disconnect from Bob. The most obvious one is when Alice is
shutting down. Blatant malicious behaviour from Bob is another one but, depend-
ing on the o�ence, disconnection may not be instantaneous: an oversized message
(more than 4 MB) leads to immediate termination, while sending a second version

message only gives 1 misbehaving point and a neighbour only gets banned upon
reaching a total of 100 of them. However, once banned by Alice, Bob needs to wait
24 hours before being able to re-establish connections with her. Di�erent misbe-
haviours give di�erent misbehaving points and some, particularly those related to
�lter management, lead to immediate ban.

Finally, Alice may drop her connection with Bob if Carol tries to establish a new
one with her and all of her inbound connection slots are taken. In that case, she
applies the following logic to choose a neighbour to evict: from her set of neighbours,
she withdraws her outbound ones, then sorts the set by the hash3 of her neighbours'
subnet su�xed by a random salt generated during initialization (which makes this
eviction process unpredictable, assuming that her random number generator is good
enough) and withdraws the last four members from the set, then the eight members
with the lowest RTT, then the half of the remaining set with which the connection

3Here, only a single SHA-256 hash is performed.
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Figure C.1: Example of message �ow related to connection establishment and man-
agement. Double lines indicate that two messages are sent in a row: as opposed to
TCP's piggy-backed ACK, they are sent independently as two distinct replies to a
single message.

has been up for the longest time. Finally, she keeps only the subnet that maximizes
the number of neighbours still in the set and picks the one with which the connection
is the youngest, unless there is only one neighbour left in the set. This procedure,
which may seem overcomplicated, is devised to maximise Alice's connection to the
network while preventing her from being isolated by an attacker who would try to
take up all of her inbound connection slots (and possibly do something nasty to her
outbound connections, because otherwise she would not actually be isolated from
the network).

Bob will realise that Carol has closed their connection, independently of who
initiated it, when one of the following time out scenarios occurs: she sent no message
during the �rst 60 seconds of the connection, he did not succeed in sending her or
receiving from her any piece of data, or getting a correct pong reply from her in more
than 20 minutes. When any of these events happens, he assumes the connection to
be dead and closes it.

Figure C.1 summarizes this process. Alice opens a connection with Bob and they
perform the Bitcoin 4-way handshake. Later, Alice sends a ping to Bob, who replies.
When Carol tries to open a connection with him, he decides to let go of Alice, who
has no way of knowing it right away. The ping time-out is but an example of signal
to close the connection.
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C.2 Address management

There are two sides to managing addresses in a network: how nodes handle those
they know, and how they exchange them between each other. For both of them, Core
uses a randomized approach to mitigate, mainly, �ngerprinting attacks. Finally,
a third operation is required by Core: the random selection of an address when
establishing a new connection. Core runs on top of IPv4 and IPv6 depending on
their availability and can use Tor [DMS04].

Alice's address manager is a set of 1280 buckets of size 64: 1024 are used to store
addresses that are known but have never been tried (called �new� buckets), and the
other 256 are used to store addresses that have been tried (�tried� buckets). It is
designed to be robust against Sybil attacks.

When Alice receives Bob's address from Carol, she tries to add it in her address
manager. This operation fails if the address is not routable (e.g. if it belongs to
a private subnet such as 192.168.0.0/16 di�erent from that of Alice). Otherwise,
she creates or updates a list of information regarding Bob, including the services
he advertises and a time stamp whose value is described in Appendix A.7. If the
address was already known but had never been tried and has a more recent time
stamp than the one previously reported, appears less than 8 times in the database,
and succeeds in a Bernoulli trial with probability 2n where n is the number of times
it already appears in Alice's database, or if it simply is new to Alice, it is added to
a new bucket.

To that end, the address manager �rst computes four hashes on inputs including
its own secret key, Bob's and Carol's respective subnets and some modular reductions
to obtain a bucket index. Then, it selects a position in the bucket by using two
other hash computations based among other on the bucket index and Bob's subnet.
Finally, it inserts Bob's address at the selected position in the selected bucket either
if it was empty or if the address previously there was not interesting enough (i.e.
with a time stamp too old, too far away in the future or with which too many
consecutive connections attempts have failed).

The main way for Alice to get addresses is to ask her neighbours to share parts
of their databases. This is done through a getaddress message, which can only be
sent in an outbound connection. As described in Appendix C.1, Alice sends it to all
of her outbound neighbours during the version handshake.

When Bob receives a getaddress message from Carol, he ignores it if Carol is an
outbound neighbour. Otherwise, he randomly picks 23 % of the addresses he knows
(up to 2500), and sends them back in as many addr messages as needed, each one
containing up to 1000 entries. Those entries contain, besides the IP address and
port number, information about the services Bob thinks they provide and a time
stamp.

Besides this query/response behaviour, nodes can also, under some conditions,
push addresses without an explicit query. First, for each of her neighbours, Alice
keeps a (future) time stamp after which she advertises her own address. When she
does, she computes the next duration to wait before doing it again as a random
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Figure C.2: Example of message �ow related to address management. In response
to Bob's GetAddr, Carol sends three Addr messages containing respectively 1000,
1000 and 500 addresses.

variable following a Poisson process with mean 576 minutes (9 h and 36 min). She
also advertises it right before sending the getaddr message during connection estab-
lishment with an outbound neighbour. When receiving an addr message from Carol,
Alice may forward its content to up to two neighbours. This happens if the message
contains at most 10 entries, and Alice has not requested a getaddr message from
Carol or Carol has previously sent an addr that was not full (i.e. less than 1000
entries), and only the entries with a time stamp at most 10-minute old, that are
routable (i.e. not belonging to a private subnet such as 192.168.0.0/16) are relayed.
The neighbours to which Alice relays those addresses are picked based on hashing
computations, a random salt generated at initialization time and a time stamp with
a 24-hour granularity: this way, Alice can get a reasonable idea of which addresses
those neighbours know to avoid sending them again and again the same ones.

Figure C.2 summarizes this process: Bob is connected to Alice and opens a
connection to Carol (not shown) and asks for a list of addresses. She replies with the
maximum number of addresses (assuming that she has more than 10 870 addresses
stored in her address manager). After a while, she advertises her own address to
Bob, who forwards it to Alice.

C.3 Block and transaction propagation

All of the above should not let one forget Bitcoin's purpose: replicate a ledger over
all nodes involved in the network. Thus, the only messages that are actually at the
core of Bitcoin are the block and tx ones, while the rest can be seen as support
functions to get them where they need to be. Transactions, blocks, their respective
validity checking procedures and the speci�c initial block download procedure are
described in Appendices A.3 and A.4; this section focuses on the messages exchanged
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by approximately synchronized nodes when a new block or transaction is propagated
through the network.

The main way for Bob to learn that Alice has blocks and/or transactions to send
him is by receiving inv messages from her, which can advertise up to 50 000 hashes
each. When Bob receives such a message, he iterates over its entries and deals with
them based on their type if he does not already have the corresponding data (in
which case he simply drops the inventory):

Block Unless it has already been requested from another neighbour, Bob asks Alice
both for all the headers between his current tip and the advertised block (in
case a few are missing between them through a getheaders message) and the
block itself, unless Alice is already transferring 16 blocks;

Transaction Unless it has already asked one of his neighbours for the corresponding
transaction, he asks her for it.

In both cases, Bob's query is made through getdatamessages, containing at most
1000 inventory requests. When Alice receives one, she replies with the appropriate
amount of block or tx messages to supply the data, handling pathological cases
(e.g. getdata requests for data she doesn't have) either by ignoring them, sending
notfound messages or terminating the connection.

When Bob receives a valid transaction, it relays it by sending the corresponding
inv to his neighbours. He then iterates over his set of orphan transactions to re-
cursively validate those that were waiting for this input (and relay the newly valid
ones as well). If the transaction is invalid because it misses inputs, it is kept as an
orphan but not relayed while waiting for the parent transaction to be received. At
most 100 orphan transactions are kept at the same time: when the set grows bigger,
random elements are picked and pruned.

When Bob receives a block, the validation process is quite more complex; the
result is that he broadcasts it to his neighbours if it becomes the tip of his local
blockchain, along with all the blocks on which it is built that were not part of the
main chain before (which only exist in case of fork).

In both cases, broadcast is done using the same three-way exchange: inv,
getdata and actual data message4. However, there is one more trick to inv broad-
cast: when preparing a batch of inv's for Alice, Bob include the latest blocks if he
doesn't know whether Alice already has them and determines whether or not the
message should include all transactions (this happens every few seconds, the delay
is generated through a random Poisson process with a mean of 5 seconds). For every
incomplete batch, each transaction has a 25 % chance of being included: the hash
of the xoring of its hash with a random salt (generated at node initialization) must
have two trailing zeroes (this means that if a transaction is not selected for a batch
of incomplete inv's, it will never be selected before the next batch of complete ones).

4The term �three-way� exchange is used for blocks even though it actually comprises 5 messages
because they are sent in three batches.
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Figure C.3: Example of message �ow related to data propagation. Alice and Carol
are two neighbours of Bob that are not neighbours of each other. Alice advertises a
block b and a transaction t.

From v0.12.0 on, Bob can also advertise blocks to Alice by directly sending her
the headers, instead of an inv, assuming she has declared being interested in that
option. In that case, right before preparing a batch of inv's, Bob looks for the �rst
block he has that Alice doesn't, and sends a headers message containing its header
and all the following ones. Upon reception of a headers, Alice validates each entry
and stores it in her chain of headers (a sub-part of the blockchain) so that she can
skip this part of the block validation process when receiving the rest of the block and
only requests the full blocks that actually make the main branch of her blockchain
grow (which includes switching main branch had she opted for the loosing branch
of a fork) that she has not already requested.

This describes how blocks and transactions are propagated over the network
once someone has started transmitting them. It usually is up to the signer of a
transaction to make sure it is propagated: to that end, the newly signed transaction
is added to the list of those that need to be relayed. Every so often (i.e. after a
random amount of time of up to 30 minutes), Bob rebroadcasts those that are older
by more than 5 minutes than the last block and still uncon�rmed. As regards blocks,
whenever Bob's local blockchain tip is changed, every block newly included in the
active branch (which may be more than one only in case of fork) is advertised to
all neighbours using the regular block propagation mechanism. This includes newly
found blocks.

Figure C.3 summarizes this process: Bob is connected to Alice and Carol, when
Alice starts broadcasting a block and a transaction. He asks for both and broadcasts
each as soon as he has validated them. Compared to the time needed to verify a
usual block, verifying a single transaction seems instantaneous. Moreover, he agreed
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with Carol during the connection handshake to advertise blocks by sending directly
their headers to let her validate it before requesting the rest of the block.

C.4 SPV nodes

Peers with limited bandwidth, processing power or energy supply can also run in
Simpli�ed Payment Veri�cation (SPV) mode. Basically, when doing so, the peer
trusts the network to validate blocks and transactions and only performs minimal
veri�cation of what it receives: it may assume the role of wallet but only partially
handle those of router and blockchain store.

This mode of operation is advertised in the version message; nodes will drop
outbound connections to SPV nodes but will accept inbound ones. Right after
connection establishment, the SPV client, Bob, will send his neighbour, Alice, a
Bloom �lter5 [Blo70]. Then, whenever Alice can relay a transaction to Bob, she will
�rst check it against Bob's �lter to see if it has a chance of interesting him and, if
not, will not send it to him.

Block transmission is also modi�ed: instead of regular block messages, Alice
will send merkleblock ones. They contain the regular header and the list of hashes
needed to verify that the transactions Bob wants to know about are included in it
as advertised; since they do not contain the actual transactions, Alice also sends as
many tx messages as needed along with each of them. How this veri�cation works
is described in Appendix A.4.3.

The reference client does not include an SPV mode: it cannot handle receiving
merkleblock messages, and would reject any coinbase transaction sent as a loose
transaction, which would happen if it was interested by one.

C.5 Additional sources of complexity

Most of Appendix C has described the regular operations of Core when left alone in
charge of every decision to make. However, there are many customization options
available to the user which make the decision-making process quite more complex.
Examples include the addnode and connect options described in Appendix C.1 but
also white and black listing of addresses and networks, upper bounding the amount
of data uploaded to the network and changing most of the internal constants such
as the duration of banishment. Moreover, Bitcoin clients usually have to accept
interactions with the user, at least to generate new transactions on demand: this is
the only thing that cannot be left entirely up to the computer.

All in all, Core is a complex program: running

cloc $(git ls-files)

5A Bloom �lter is (here) a data structure allowing to check e�ciently if a transaction is de�nitely
not or probably of interest. More details are provided in Appendix A.8.
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on v0.12.1 of its repository cloned from Github [Core] gives a total of 312 426 lines
of code, out of which 97 537 are in C++ �les and header �les (and 167 701 lines
are Qt Linguist ones, coming from the several available translations of the graphical
interface), plus barely 16 276 lines of comments. Thus, it would be an extremely
di�cult and tedious task to provide a complete analysis which would probably be
outdated before being complete.

There are two other important reasons explaining the complexity of the Bit-
coin network. First, Core is far from being alone in the network, as reported in
Appendix D: it barely represents 46.98 % of the nodes. Though its two main com-
petitors are older versions of itself, it still makes for complex backward-compatibility
handling. Given its Open-Source status, it is easy for anyone to modify the code and
alter the way some operations are performed, as was done to perform an experiment
during this work. This goes towards the trustless model: peers have no way of know-
ing what their neighbours do, and can only assume the worst. Then, the Bitcoin
network is not even the only way for data to be propagated: pools tend to adver-
tise the blocks they �nd on their websites, making it easy to fetch the information
directly through HTTP requests. Similarly, trackers such as Blockchain.info [BC.I]
have developed APIs to query them for blocks and transactions. There are also spe-
cialized parallel networks [Cor16], focusing on high-speed propagation, which create
invisible edges with very unusual characteristics in the graph. Though the principle
is good, as decreasing propagation delays increases the e�ective computing power by
helping miners receive the latest block quickly, they may have unwanted side e�ects.
Indeed, BlueMatt's Bitcoin Relay Network [Cor16] was centralised, which tends to
go against Bitcoin's model; moreover, the impact on the global Internet congestion
may be non-negligible if largely adopted, especially those, such as BlueMatt's FI-
BRE, that are based on UDP, a protocol known for its lack of congestion control.
However, analysing whether this would actually have any impact on the Internet
infrastructures is completely out of the scope of this work.

C.6 Interfacing application and transport layer

Core [Core] uses a multi-threaded approach to network communications. It basically
splits the application layer in the TCP/IP model in two: the upper layer handles
Bitcoin messages and the lower layer handles serialized data that the TCP layer
can handle as is. Each layer is governed by a thread that continuously loops and
switches between sending and receiving data.

The lower layer is managed by the Net thread. It relies on two bu�ers per
neighbour, both containing serialized data: one is for data to send, the other for
received data. During each loop iteration, it closes the connection to nodes �agged
by the rest of the program and deletes them from memory when there is no pointer
to them left in the program, and then service each socket. First, it handles the
listening ones (or, usually, one): for each socket listening for connection attempts,
it tries to accept new attempts and add the other end-point as a neighbour (the
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upper layer is in charge of handling the Bitcoin connection handshake described in
Appendix C.1). Then, each socket corresponding to an established connection is
assigned exactly one of three statuses: sending (if the associated send bu�er is not
empty), receiving (if there is no bu�ered message ready to be handed to the upper
layer), or idle. These states are mutually exclusive, and assigned in that order of
precedence. Error management apart, sending (respectively receiving) sockets that
are ready to send (respectively receive) data do just that, pushing to (pulling from)
the network serialized data from (to) the appropriate bu�er. After that, inactivity
checking is performed as described in Appendix C.1.

The upper layer is managed by the MsgHand thread. It relies on several bu�ers
per neighbours, each associated to a speci�c type of message to send (addresses,
inventories,...). During each loop iteration, it iterates over all neighbours to process
received messages, decides to skip the �nal sleeping phase if it still has data to
receive from any neighbour and can hand over more data to the lower layer destined
to that same neighbour and, �nally, transfer all bu�ered outbound messages (which
includes generating new ones) to the lower layer. Assuming that it did not decide
to skip it, it then sleeps for 0.1 s.

Depending on the message being processed, the function deciding to send a
message can either just bu�er it and let the MsgHand thread take care of pushing it
to the lower layer or do it itself. Generally, Bitcoin follows an optimistic approach:
when a message is pushed to the serialized sending bu�er, it immediately tries to
send it to the corresponding neighbour and only lets the Net thread take care of
what failed to be sent that way.

Figure C.4 summarizes most of this organisation. It is, however, far from display-
ing everything. Speci�cally, the sleeping periods, validity checks, and interactions
with the local blockchain and the user are not shown.
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Appendix D

Bitcoin messages

While Appendix C described how nodes use the Bitcoin messages to exchange and
propagate information in the network, this appendix focuses on the exact content
of the messages de�ned by Bitcoin's protocol in its version 70 012. Again, the three
main references used for this section are the Bitcoin developer reference [Ref], de-
scribing without any guarantee of accuracy a reference client slightly older than
that used for this work (Satoshi 0.12.1 instead of 0.13.0rc1), the uno�cial Bitcoin
developer documentation [Doc] and the source code of versions 0.12.1 of Bitcoin
core [Core]: though version 0.13.0rc1 was used for this work, Bitnodes [BN] reported
on August 7th, 2016 at 14:44:36 GMT that 46.98 % of nodes were running v0.12.1 of
the reference client while barely 117 nodes (i.e. 2.2 % of the 5344 referenced nodes)
were running v0.13.*, out of which some advertised the non-o�cial v0.13.99. Other
somewhat popular clients were v0.11.2 (8.94 %) and v0.12.0 (8.68 %) of the reference
client, and any other client (including non- reference ones) was run by less than 5 %
of the network as seen by Bitnodes.

It is organized as follow: �rst is described the shared header of all the messages,
then the types used to exchange data between nodes and �nally the control messages
used, among others, to negotiate the parameters of each connection. All labels in this
section indicate byte count, rather than bits. The MemPool, FilterClear, GetAddr,
SendHeaders and VerAck messages are not described here as they do not include a
payload.

D.1 Header

All Bitcoin messages share a common format: a 24 B header and an optional payload,
as shows Figure D.1. The header contains 4 �elds, as follows:

1. The magic string de�nes the network to which the message belongs; as of
August 2016, �ve have been o�cially standardized, out of which four are ded-
icated to experimentations. The main network uses 0xf9beb4d9.

112
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0 1 2 3 4 5 6 7

Magic string

Command name optional 0x00 padding

Length Checksum

Header

Payload
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

0 to 32MiB

Figure D.1: General format of a Bitcoin message.

2. The command name contains the type of message as a string. It is padded up
to 12 bytes with null-characters (0x00).

3. The length is that of the payload, in bytes; the maximum allowed is, as of
August 2016, 32 MiB.

4. The �rst four bytes of the double SHA-256 hash of the payload, or of the
empty string if there is none, are used as a checksum.

D.2 Data messages

D.2.1 Inv, GetData and NotFound

The inv message contains a payload of 36k+cmpct(k) bytes, where k is the number
of inventory objects advertised by the sender (between 1 and 50 000) and is the �rst
�eld of the message. The rest is a list of inventory objects, whose structure is shown
in �gure D.2. The �elds are as follows:

1. Type indicates whether the inventory is a transaction (1), a block (2) or a
�ltered block (3, see Appendixes D.2.3 and D.3.3), the latter being forbidden
in inv messages.

2. The hash is that of the object being advertised, e.g. the double SHA-256 hash
of the header of the advertised block.

An inv message can contain up to 50 000 inventory objects: if more inventories
need to be transmitted, several inv messages can be sent at a time.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Type Double SHA-256 hash

Figure D.2: General format of an inventory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Version N Start hashes

Stop hash

Figure D.3: Format of a getblocks message providing only one header hash.

The getdata and notfound messages follow the same format, respectively re-
questing or declaring not being able to send the contained inventory objects: only
the command name of the message header is di�erent.

D.2.2 GetBlocks, GetHeaders

The getblocks message contains a payload of 36 + 32k + cmpct(k) bytes, where k
is the number of hashes provided by the querier (at least one, the only limit being
the maximum length of a message). Figure D.3 shows a getblocks message with
only one hash provided. Its �elds are as follows:

1. Version repeats the protocol version number, already sent in the version mes-
sage.

2. N is the number of start hashes provided by the querier.

3. Start hashes contains as many 32 B block hash as indicated by the previous
�eld, sorted by decreasing block height.

4. Stop hash contains the last block hash that the querier requests, or all zeroes
for no limit, in which case the receiver will send back at most 500 block hashes.

D.2.3 Block, Headers and MerkleBlock

The block message contains a single block b as its payload, with a size of 80 +
cmpct(|c(b)|) + f(c(b)) bytes, where f(c(b)) is the total size of the transactions it
contains. As mentioned in Appendix A.4.4, the payload cannot be bigger than 1 MB.
See Figure D.4 for the format of a block header and (the description of the �elds is
given in Appendix A.4.1).
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The headers message contains a payload of 81k + cmpct(k) bytes, where k is
the number of block headers in the message (upper-bounded by 2000). Its �elds are
as follows:

1. A compact size unsigned integer count of entries;

2. Each of those entries are made of:

a) A 80 B block header;

b) A 0x00 byte, signalling that the header does not contain any transaction.

The merkleblock message contains a payload of 84 + 32t + cmpct(h) + dh8 e +

cmpct(dh8 e), where t is the number of hashes needed in order to verify that the
transactions of interest are at their advertised place in the block's Merkle tree.
Figure D.4 shows a merkleblock message with only one hash (which only happens
for empty blocks). Its �elds are as follows:

1. A 80 B block header;

2. A 4 B �eld counting the total number of transactions in the block;

3. A compact size unsigned integer count of the number of hashes provided to
verify the Merkle tree;

4. As many 32 B hashes as announced, corresponding either to transactions or
Merkle nodes;

5. A compact size unsigned integer count of the number of �ag bytes;

6. As many �ag bytes as announced, used to verify the Merkle tree as described
in Appendix A.4.3;

The transactions of interest are not actually sent through the merkleblock mes-
sage but as separate tx messages, described in Appendix D.2.4.

D.2.4 Tx

The tx message contains a single transaction. See Appendix A.3 for a detailed
description.

D.3 Control messages

D.3.1 Version

The version message contains a payload of 85 + k + cmpct(k) bytes, where k is
the length of the sender's user agent. Figure D.5 shows a version message with a
variable-length part, the L and User agent �elds, of 15 B. Its �elds are as follows:
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Version

Previous block's hash

Merkle root

Time stamp Target Nonce Tx count Nh

Header


Hash

Nf F

Figure D.4: Format of a merkleblockmessage providing only one hash. The �rst �ve
rows describe the header of a block, identical for Merkle and regular ones; TxCount
and Nh are not part of it.

1. A 4 B Version �eld indicating the highest protocol version supported by the
sender. For v0.12.1, the latest version is 70 012.

2. An 8 B bitmask indicated the services provided by the sender. The 0th bit
is used to show that the node can send blocks (as opposed to SPV nodes),
the �rst indicates a service that is not implemented in the reference client,
the second that the node accepts to load and abide by Bloom �lters (see
Appendix D.3.3). Finally, bits 24 to 31 are reserved for experiments and
everything else is reserved for future use1.

3. An 8 B time stamp loosely used for clock synchronization in the computation
of the median network time o�set (see Appendix C.1);

4. Then, the header include the same three �elds describing �rst the receiver,
then the sender. When pre�xed with �Rcv�, it describes the receiver as the
sender perceives it; when pre�xed with �Sdr�, it describes the sender:

a) An 8 B service which has the same meaning as the previous Services �eld
(Sdr Services actually being redundant);

b) A 16 B IPv6 address; IPv4 addresses are mapped as per RFC 4291 [RFC4291];

c) A 2 B TCP port number;

5. An 8 B nonce, used to detect connections to self;

6. A compact size unsigned integer count L of bytes in the following �eld;

7. A User agent that gives information about the Bitcoin client used by the
sender, such as /Satoshi:0.12.1/ for v0.12.1 of the reference client;

1Bit 3 is already reserved for Segregated Witness, an option that will be included in a future
version of the reference client.
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Version Services Time stamp

Rcv services Rcv address...

cont'd Port Sdr services Sdr address...

cont'd Port Nonce

L User agent Height R

Figure D.5: Payload of a version message with a 14 B user agent. �Rcv� �elds
give information the sender knows about the receiver, the �Sdr� ones are about the
sender.

8. A 4 B height, the length of the longest branch of the sender's local blockchain;

9. A 1 B Relay �ag: if set to 0, the sender wants to send a Bloom �lter to the
receiver before being sent inv and tx messages; see Appendix D.3.3 for more
details.

D.3.2 Addr

The addrmessage contains a payload of 20k+cmpct(k) bytes, where k is the number
of addresses in the message, up to 1000. Just as the headers message, it is a list
of network addresses pre�xed by its number of entries, which are all formatted as
follows:

1. A 4 B time stamp, described in Appendix A.7;

2. An 8 B service bitmask as described in the version message;

3. A 16 B IPv6 address or IPv4-mapped IPv6 address;

4. A 2 B port number.

D.3.3 Bloom �lters

There are three message type related to Bloom �lter management: FilterLoad,
FilterAdd, and FilterClear. The latter does not have a payload. The filterload
message contains a payload of 9 + k+ cmpct(k) bytes, where k is the byte length of
the data used to initialize the �lter. Figure D.6 shows a filterLoad message with
8 B of data to be used. Its �elds are as follows:

1. A compact size unsigned integer count of bytes in the following �eld;

2. Filter data stored in a byte vector;
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Figure D.6: Payload of a filterload message with 8 B of �lter data.

3. A 4 B number of hash functions used by the �lter; the maximum accepted
value is 50;

4. A 4 B salt for the seed used in the hash function of the �eld;

5. A 1 B �ag describing how and when to update the �lter: if the least signi�cant
bit is set, the �lter is updated whenever a transaction that matches is found; if
only the following bit is set, the �lter is updated only if the script of a matching
transaction pays to a public key (or set thereof, in case of multisignature
scripts). The other bits are reserved for future use.

The filteradd message contains a payload of k + cmpct(k) bytes, where k is
the byte length of the data to add to the �lter, which is upper bounded by 520 B.
The payload only contains this element as a byte vector, pre�xed by its length as a
compact size unsigned integer.

D.3.4 Ping and pong

The ping and pong messages contain an 8 B payload, a single nonce.

D.3.5 Reject

The reject message contains a variable-size payload. Figure D.7 shows a reject

message with variable-length �elds set to valid arbitrary sizes. Its �elds are as
follows:

1. A compact size unsigned integer count of bytes in the following �eld;

2. The command name of the rejected message, without null padding (2 B to
12 B);

3. A 1 B error code;

4. Another compact size unsigned integer count of bytes in the following �eld;

5. An ASCII explanation of the error, for debugging purposes (up to 111 B );

6. Extra data, depending on the type of the rejected message and the error code;
usually, either empty or set to the hash of the rejected object (0 or 32 B);
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Figure D.7: Payload of a reject message answering to a block message with an 8 B
reason and 32 B of extra data.

D.3.6 Alert

The alert message contains an encapsulated payload. The outer part of the payload
is as follows:

1. A compact size unsigned integer count of bytes in the following �eld;

2. The inner payload, see below;

3. A compact size unsigned integer count of bytes in the following �eld;

4. The DER-encoded signature of the alert, produced by a developer with a
special alert key.

Figure D.8 shows the inner part of an alert message with variable-length �elds
set to valid arbitrary sizes. Its �elds are as follows:

1. A 4 B alert format version, still 1 in protocol version 70 012;

2. An 8 B POSIX time stamp indicating at which point nodes should stop relaying
the alert;

3. An 8 B POSIX time stamp indicating the expiration time of the alert;

4. A 4 B alert ID;

5. A 4 B threshold: all alerts with ID below it should be cancelled;

6. A compact size unsigned integer count of entries in the following �eld;

7. A vector of 4 B ID's indicating speci�c alerts that are cancelled by this one;

8. A 4 B minimum protocol version; this alert does not apply to nodes running a
version strictly less than it but they should still relay it;
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Figure D.8: Payload of an alert with variable �elds set to arbitrary but valid
lengths.

9. A 4 B maximum protocol version; this alert does not apply to nodes running
a version strictly greater than it but they should still relay it;

10. A compact size unsigned integer count of entries in the following �eld;

11. A vector of user agents represented as a variable-length string pre�xed by a
compact size unsigned integer count of bytes; this alert only applies to nodes
running one of those user agents. If empty, it has no e�ect on the alert (all
nodes with an a�ected protocol version are a�ected);

12. A 4 B priority over the other alerts;

13. A compact size unsigned integer count of bytes in the following �eld;

14. A comment string that should not be displayed to the user;

15. A compact size unsigned integer count of bytes in the following �eld;

16. A comment string that should be displayed to the user;

17. A compact size unsigned integer count of bytes in the following �eld;

18. A string �eld reserved for future use.

Note that the alert message has been removed as of version 0.13.0.



Appendix E

Glossary

account

Conceptually, an ECDSA keypair used to send money by signing transactions
and receive it through the associated address. In our formal model, is used to
denote both a transaction output and the input spending it. It is important
to notice that these two are di�erently typed Bitcoin objects and that Bitcoin
does not actually de�nes accounts: the concept was ported from the banking
world to simplify analogies.

address

Depending on the context, may either correspond to Bitcoin or network ad-
dresses. The former is a bitstring computed from the public key of an account
through operations involving hashes among others used to hide the public key
for as long as it has not been used. The latter is the network address of a
node, as in the combination of IP address and port number that identi�es it;
it is however supposedly very hard to �nd which Bitcoin addresses correspond
to which network address. See, respectively, Appendices A.6 and A.7.

address manager

Object handling a node's address database as described in Appendix C.2.

altcoin

Describe every (decentralized) crypto-currency that is not Bitcoin, such as
Ethereum [But14].

bitcoin

Unit of the currency de�ned by Bitcoin. Abbreviated BTC, their exchange
rate for traditional currencies has had considerable variations since 2008.

Bitcoin Improvement Proposal (BIP)

Document describing a way to modify Bitcoin that is submitted to the com-
munity for approval. May or may not be accepted and implemented.

121
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block

Structure containing a list of transactions, a PoW, and a pointer to its parent
in the blockchain, found at a rate of approximately one every ten minutes by
the miners of the Bitcoin network.

block con�ict detection service (BCDS)

Specialised CDS for blocks..

blockchain

Bitcoin's ledger, tree of all the blocks that have been found. The longest
branch of the tree (in terms of di�culty) is the consensus one, the blockchain
per se. Regular transactions are performed on the main chain but there are
also two de�ned speci�cally for performing tests without perturbing the main
one.

coin

See bitcoin.

coinbase transaction

First transaction of a block, it attributes the block reward (minting and fees)
to the miner..

compact size unsigned integer

Integer stored on a variable number of bytes. See Appendix A.1 for the detailed
description.

con�ict detection service (CDS)

Service in charge of detecting and solving con�icts such as double-spending
attempts and forks..

denial of service (DoS)

Here, attack consisting in disrupting the access of a node to the network, e.g.
by �ooding it with packets or by not forwarding messages to or from it.

di�culty

Ratio between the maximum target and the current one: if equal to D, a 256-
bit-long bitstring chosen uniformly at random has probability 1/(232D) to be
below the corresponding target.

distributed hash table (DHT)

Class of distributed system proving a lookup service based on keys and main-
tained by the network.
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double-spend

Attack consisting in emitting two con�icting transactions to get the recipient
of one of them to believe that he received funds and get it invalidated by the
network when the second one is the one included in a block.

Elliptic Curve Digital Signature Algorithm (ECDSA)

Private-key cryptographic signing primitive used by Bitcoin, de�ned in [JMV01].

fee

Also called transaction fee. Di�erence between the sum of inputs of a trans-
action and the sum of its output, that the miner including this transaction in
a block is invited to get control of through the coinbase transaction. Acts as
an incentive for miners to try and include the transaction in blocks.

�nd

A block is said to have been found when a miner �nds a nonce such that it
solves a PoW. The miner �nding a block is rewarded.

fork

Situation with two chains competing to be accepted by the network as the
blockchain. Happens when two valid blocks are mined on top of the same
parent.

hard fork

Fork caused by the propagation of blocks valid for di�erent and incompatible
versions of the protocol. Happens e.g. when the size limit of blocks is increased:
the nodes still using the old protocol will refuse the bigger blocks.

hash

Output of a hash function that takes an input of arbitrary length and outputs a
seemingly random bitstring of �xed length. Bitcoin tends to use double hashes
rather than simple: 256-bit hashing uses (SHA-256)2 and 160-bit hashing is
the result of RIPEMD-160 applied to the SHA-256 hash of the input.

inbound

Related to a connection initiated by someone else. Its other endpoint sees it
as outbound.

mempool

Pool of pending transactions maintained internally by each blockchain-storing
peer. Stands for memory pool as it is mostly kept in main memory.

mine

Action of trying to solve PoWs in order to �nd blocks.
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miner

Agent trying to solve PoWs to generate blocks.

node

Peer of the Bitcoin network maintaining a local blockchain and a mempool,
connected to the network and acting as a miner.

outbound

Related to a connection initiated by the node. The other endpoint of said
connection sees it as inbound.

peer

Set of software acting as a unique agent. May be any combination of a Bitcoin
router, a blockchain store, a wallet and a miner.

pool

Group of miners working together to �nd blocks. Usually, when one is found,
the reward is shared between the pool members and infrastructure according
to some prede�ned rule.

probability density function (PDF)

Function describing the probability that a random variable falls within ranges
of values.

proof of stake (PoS)

Process using a blockchain to seed a random number generator in a publicly
veri�able way in order to elect the next block �nder with the same probability
distribution as the distribution of coins in the system.

proof of work (PoW)

Cryptographic puzzle randomly solved. In Bitcoin, consists in �nding a nonce
such that the double SHA-256 of the block header that includes it has a number
of leading zeroes computed by the system in order to set the average generation
rate of blocks to ten minutes.

public key infrastructure (PKI)

Trusted infrastructure distributing certi�cates to entities so that they can
prove their identity to other entities.

RACE Integrity Primitives Evaluation Message Digest (RIPEMD)

Family of hash functions. Bitcoin uses the 160-bit version, introduced in
[DBP96].



GLOSSARY 125

round-trip time (RTT)

Duration between the instant when a device A sends a message to a device
B and that when it receives B's response, computed preferably in situations
where B does not need to perform heavy operations in order to prepare the
response.

router

Role of a peer connecting to the Bitcoin network to receive and propagate
data.

satoshi

Smallest division of bitcoins, equal to 10−8 BTC.

scriptPubKey

Script included in a transaction output to make sure only the recipient can
redeem it. See Appendix B.

scriptSig

Script included in a transaction input to prove that the emitter has the right
to redeem it. See Appendix B.

Secure Hash Algorithm (SHA)

Family of (families of) hash functions. Bitcoin uses the 256-bit version, stan-
dardized in [FIPS180-4].

Simpli�ed Payment Veri�cation (SPV)

Mode of operation of a Bitcoin node that does not verify the validity of the
blocks it receives. See also SPV mine.

SPV mine

Action of mining on top of blocks that have not been validated. Considered
an attack on the network.

store

Role of a peer maintaining a local copy of the blockchain.

target

256-bit-long number such that the hash of a block header must be less than
or equal to it for the block to be considered valid. See also di�culty.

transaction

Basic structure of Bitcoin transferring the control of some coins from a list of
accounts to another one.
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transaction con�ict detection service (TCDS)

Specialised CDS for transactions..

unspent transaction output (UTxO)

Output of a transaction that has not yet been used as an input by another
transaction. Does not qualify outputs with a provably unredeemable script-
PubKey.

wallet

Software handling transactions: tracks those sending funds to the set of keys
it manages and signs those requested by the user.
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