
 
 
 

Classification and Solutions 
of General Combinatorial Games  

 

 
 
 

  
  
  
 
 
 
 

 

 
 
 

 E R I K  E D I N  
 
 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 

 

 Master of Science Thesis 
 Stockholm, Sweden 2007 

 

 



 
 
 

Classification and Solutions 
of General Combinatorial Games   

 

 
 
 

  
  
  
 
 

 E R I K  E D I N  

 

 
 
 

 Master’s Thesis in Computer Science (20 credits) 
 at the School of Engineering Physics 
 Royal Institute of Technology year 2007  
 Supervisor at CSC was Fredrik Niemelä 
 Examiner was Stefan Arnborg 
 
 TRITA-CSC-E 2007:048 
 ISRN-KTH/CSC/E--07/048--SE 
 ISSN-1653-5715 
 
 
 
 
 
 Royal Institute of Technology 
 School of Computer Science and Communication 
 
 KTH CSC 
 SE-100 44 Stockholm, Sweden 
 
 URL: www.csc.kth.se 

 

 

 
 

 

 



Abstract

This master’s project is an attempt to enable automatic classific-

ation and solving of combinatorial games, in the context of general

game playing. The Game Description Language is used as the frame-

work for general game playing. The classification of the combinatorial

games is focused on the basic properties normal or misère form, all

small games, partial or impartial games, and number of players. The

methods used in making these classifications are template matching

and logical deduction. This master’s thesis focuses on solving only

subtraction games, since they are easily analysed, while remaining in-

teresting. Presented here is a solution, that can analyse the most

common constructs, to solving a slightly generalised form of subtrac-

tion games. The classification and solving is tested on a suite of games

constructed for this master’s project.

Klassificering och lösning av generella kombinatoriska spel

Sammanfattning

Detta examensarbete är ett försök att möjliggöra automatisk klas-

sificering och lösning av generella kombinatoriska spel. Som verktyg

för att beskriva kombinatoriska spel används Game Description Lan-

guage utvecklat på Stanford. Klassificeringen av kombinatoriska spel

är fokuserad på de grundläggande egenskaperna normal- eller misère-

spel, ”all small”-spel, partiska och opartiska spel, samt antal spelare.

Metoderna som används är igenkänning från mall och logisk härled-

ning. Detta examensarbete fokuserar på lösning av subtraktionsspel,

eftersom de är lättanalyserade, men fortfarande intressanta. Här pre-

senteras en lösning, som kan analysera de vanligaste konstruktionerna,

av en något generaliserad form av subtraktionsspel. Klassificering och

lösningen testades på ett antal spel, som konstruerades för detta arbe-

te.



Contents

1 Introduction 1
1.1 Why combinatorial games? . . . . . . . . . . . . . . . . . . . 1

2 Background 2
2.1 General game playing . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Game Description Language . . . . . . . . . . . . . . . . . . . 3

2.2.1 Language basics . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Language constructs . . . . . . . . . . . . . . . . . . . 4
2.2.3 Game Manager . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Language design . . . . . . . . . . . . . . . . . . . . . 6

3 Combinatorial games 7
3.1 Number theory on games . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Operations on games . . . . . . . . . . . . . . . . . . . 8
3.2 Nim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Impartial games . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Nimbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Subtraction games . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Perfect strategies . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Automatic classification 12
4.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Deciding who is in control . . . . . . . . . . . . . . . . . . . . 13
4.3 Normal and misère forms . . . . . . . . . . . . . . . . . . . . 14
4.4 All small games . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Partial and impartial games . . . . . . . . . . . . . . . . . . . 15

4.5.1 Weak comparison . . . . . . . . . . . . . . . . . . . . . 16
4.5.2 Determining partiality . . . . . . . . . . . . . . . . . . 16

5 Solving subtraction games 18
5.1 Subtraction games . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 General game analysis . . . . . . . . . . . . . . . . . . . . . . 18

5.2.1 Recognizing arithmetic . . . . . . . . . . . . . . . . . . 19
5.3 General subtraction game analysis . . . . . . . . . . . . . . . 20

5.3.1 Models of heaps . . . . . . . . . . . . . . . . . . . . . . 20
5.3.2 Determining subtraction sets . . . . . . . . . . . . . . 21
5.3.3 Subtraction graph . . . . . . . . . . . . . . . . . . . . 24

5.4 Game theoretic analysis . . . . . . . . . . . . . . . . . . . . . 25
5.4.1 Subtraction game theoretic analysis . . . . . . . . . . 25



6 Implementation 26
6.1 Grammar of the Game Description Language . . . . . . . . . 26
6.2 Game suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2.1 Classification of the game suite . . . . . . . . . . . . . 27
6.2.2 Misclassifications . . . . . . . . . . . . . . . . . . . . . 27
6.2.3 Solving the game suite . . . . . . . . . . . . . . . . . . 28
6.2.4 Failed cases . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Conclusions 32
7.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1.1 Normal and misère form . . . . . . . . . . . . . . . . . 32
7.1.2 All small games . . . . . . . . . . . . . . . . . . . . . . 32
7.1.3 Partial and impartial games . . . . . . . . . . . . . . . 32

7.2 Solving subtraction games . . . . . . . . . . . . . . . . . . . . 33
7.3 General game playing and GDL . . . . . . . . . . . . . . . . . 33
7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.4.1 Classification of cyclic games . . . . . . . . . . . . . . 34

Bibliography 35

A Game rules 36
A.1 Clobber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2 Domineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.3 Kayles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.4 Turning turtles . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.5 Fox and geese . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.6 SG{1,2,3}(normal form) . . . . . . . . . . . . . . . . . . . . . 41
A.7 SG{1,2,3}(misère form) . . . . . . . . . . . . . . . . . . . . . 42
A.8 SG{1,2,5} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.9 SG{1-5-7} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.10 SG{3-5-7} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.11 SG{1,2}{1,5} single . . . . . . . . . . . . . . . . . . . . . . . . 46
A.12 SG{1,2}{1,5} . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.13 SG{1,5,7} nonzero . . . . . . . . . . . . . . . . . . . . . . . . 48

B Game Description Language grammar 49



List of Figures

1 Pseudo code to determine if a game is ”all small” or not. . . . 16
2 Pseudo code to determine if a game is impartial or not. . . . . 17
3 Pseudo code to find an equivalent move available to a specified

player. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Subtraction graph for subtraction set {1, 2, 3} . . . . . . . . . 24
5 Pseudo code for determining all distances from a source to a

target node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Pseudo code for the Sprague-Grundy function of a subtraction

game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 Pseudo code from game SG{1,2}{1,5} . . . . . . . . . . . . . 31



1 Introduction

1 Introduction

This master’s project can be seen as being divided into two distinct parts.
The first part is the classification of general combinatorial games. In this
part I attempt to enable classification of general combinatorial games, in
order to facilitate selection of an appropriate strategy for a game. This is
described in section 4.

The second part pertains to automatic solving of general combinatorial
games. This project focuses on solving subtraction games. This is described
in section 5. Subtraction games were selected since they are both an inter-
esting and a relatively important class of games.

1.1 Why combinatorial games?

When using the Game Description Language for general game playing, com-
binatorial games are a very appropiate class of games to analyse. The
reason for this is that the limitations of the Game Description Language
and the characteristics of combinatorial games coincide on several points.
The Game Description Language can only describe games in which both
players maintain perfect information, one of the basic requirements of com-
binatorial games. The absence of chance in GDL also coincides with the
absence of chance in combinatorial games.

Two points in which the Game Description Language and combinatorial
games do not agree are the number of players and turn taking. Combinat-
orial games carry strict conditions as they only allow two-player games with
alternating turn taking. For a language designed to describe general games,
these are naturally not acceptable restrictions. However, the turn-based
design of GDL makes it easy to simulate alternating turn taking. Thus, it is
a simple exercise to design relations to form the general nature of GDL to
the more strict nature of combinatorial games.

Acknowledgements

I would like to thank my supervisor Fredrik Niemelä for a fun and rewarding
master’s project. I would furthermore like to thank Alexander Ahl, my fellow
student, with whom I’ve spent many fun hours in the office.

1



2 Background

2 Background

The following is a presentation of the fields of general game playing, and the
framework for general game playing created by the Stanford logic group.

2.1 General game playing

General game playing is a field of research in which the aim is to enable
computers to play games that they have not seen before. This in contrast
with current game playing machines that are created to play one game only.
The idea is that the computer player is given a formal description of the
game it is to play, and proceeds to analyse the game to select an appropriate
strategy.

In the early days of research on artificial intelligence it was widely be-
lieved that a good measure of intelligence was the ability to successfully play
complex games such as chess. This idea was rooted in the fact that such
games have long been considered to require great intelligence to master. As
such, much research was focused on making game engines capable of compet-
ing against master players of each game. To some extent, this research has
also been successful. As an example, in 1995 G. Tesauro [6] published an art-
icle in which he described his backgammon playing software TD-Gammon.
Given limited knowledge of backgammon, he showed that a computer could
successfully learn to master the game. His software TD-Gammon can rival
the best players in the world. Since the software was only given very lim-
ited knowledge on backgammon before its unsupervised training, this can
be seen as evidence that it learned well, and hence displayed some form of
artificial intelligence. This specific program is naturally only able to play
backgammon and cannot extend or teach itself to do anything else, but it
demonstrated the viability of the methods it uses. Another example of a
game playing machine is Deep Blue, the computer and chess engine that in
May 1997 defeated the reigning world champion of chess, Gary Kasparov, in
a game of chess. However, the idea that it would require true artificial intel-
ligence to play chess effectively against a master player in the flesh was put
to rest when Deep Blue defeated Kasparov. The reason for this is that Deep
Blue possesses no ”real” intelligence. Deep Blue plays chess well only because
very capable computer scientists and master players have hard coded know-
ledge of chess into a very powerful computer. It is not capable of learning
from its mistakes or adapting its game play during a game.

It is from these experiences with game playing computers that the idea
of general game playing began to find a foothold. One hopes that when
a computer player must deal with a variety of previously unseen games, it
must be able to generalize - a form of intelligence. Barney Pell is credited
with introducing the idea of general game playing in his article [5]. In this
article, he uses the term ”metagame” to describe what later became known

2



2.2 Game Description Language

as general game playing.

2.2 Game Description Language

The Game Description Langugage (GDL) [4] is a language created in the
Stanford Logic group aimed at describing any finite, perfect information,
deterministic game, using first predicate logic. In this context, perfect in-
formation means that each player knows the full state of the game at any
given time. However, the Game Description Language allows the use of sim-
ultaneous moves, and as such, a player will not always know the effect a
move he makes will have on the state of the game. From this point of view,
these games may not always be perfect information games. Since we will only
concern ourselves with combinatorial games, where no simultaneous moves
are made, this will, however, not be an issue.

The Game Description Language is a variant of the Datalog language
[4], with its syntax in the form of the Knowledge Interchange Format (KIF)
language. The design of GDL suggests that the creators strived for a minimal
language, in order to be able to mathematically analyse its capabilities when
describing games.

The specification for the Game Description Language also describes the
state vector model that keeps all information on the game.

2.2.1 Language basics

All expressions in GDL are prefix expressions delimited by parentheses, in
the form of (expression-name arg1 arg2 ... argn), where arg i is a GDL
expression, or a constant. A constant may be any alphanumerical string.
The specification does not however specify an exact range of characters that
may be used for constant, so different implementations may allow different
forms of constants.

Variables in GDL are written as ?foo, and may be used instead of any
constant, except as the name of a relation. Every variable must be bound
by other expressions, and may not be unbound and assumed to range over
the values that it can take.

An expression in GDL is a statement about something that is true. Ex-
pressions often relate a name with its argument, like (succ a b). Writing
(succ ?x ?y) would then evaluate to true, if and only if, ?x is a and ?b is
y.

The Game Description Language also uses implications where one or
several conditions imply an expression. This is written as,

3



2.2 Game Description Language

(<= (implied-relation arg1 arg2 ... argn)

(condition-1 arg11 arg12 ... arg1k)

(condition-2 arg21 arg22 ... arg2l)

.

.

.

(condition-m argm1 argm2 ... argmp))

The list of conditions is a conjunction. If one wishes to use a disjunction as
a condition, one may use the or relation.

2.2.2 Language constructs

The Game Description Language has a number of built-in constructs. The
role relation specifies the names of the players. It is used once for each
player, as

(role left)

(role right)

The init relation specifies the initial state of the game. It is often used
to initialise boards and specify which players begins. Initialising a board can
look like

(init (cell 1 1 o))

(init (cell 1 2 x))

(init (cell 2 1 o))

.

.

.

(init (cell 5 5 b))

In this format, the cell at coordinates (1,1) is initialised with a piece named
by o, the cell at coordinates (1,2) is initialised with a piece named by x, and
so on.

The terminal relation specifies when the game ends. As an example,
this code specifies that the game ends when each heap has reached zero.

(<= terminal

(true (heap1 0))

(true (heap2 0))

(true (heap3 0)))

The legal relation is used to specify which moves are permitted during
a turn of the game. As the previous relations this relation depends on a
number of conditions. The example shows a legal subtraction move.

4



2.2 Game Description Language

(<= (legal left (move ?h ?x))

(succ ?x ?y)

(true (heap ?h ?y)))

The does relation is used to check what move a player has made. It is
used in the form (does player move) where move is a GDL expression of a
move made legal by a legal relation, and player is a valid role.

In order for the game to progress, GDL has a way to specify the state in
the next turn. This is done by the next relation. It is used in an implication,
and causes its argument relation to be true in the next turn. The syntax is
as follows.

(<= (next (heap 1 ?x))

(true (succ ?x ?y))

(does left (move ?y)))

This next implication states that in the next turn, if player left makes a
move (move ?y) for any value ?y, and the expression (succ ?x ?y) is true,
then set (heap 1 ?x) to true, for the value of the variable ?x.

The goal relation is used to assign points to players. The syntax is

(<= (goal left 100)

(terminal-conditions)

(condition-1 arg1))

2.2.3 Game Manager

The Game Manager is the entity that keeps the state vector model describ-
ing the game state, and asks each player for a move. In a server/client
perspective, the Game Manager is the server while the computer players are
the clients. It is the responsibility of the Game Manager to keep track of the
players, and to provide them with the game description.

In each turn of the game, the Game Manager asks each player in the
game for a valid move. There is no mechanism available for only asking a
specific player for a move. Each player must have a valid move in every turn
of the game. In section 2.2.4 we discuss briefly how to achieve the effect of
a turn taking game.

The state vector model is a list of true statements about the game. In
each turn of the game, when all players have made their move, the next
state vector model is calculated, using the logic expressions in the game
description. This is called the transition function. The state vector model is
the entire model of the game.

The transition function must be completely defined. That is, states are
not implicitly kept in the state vector model if nothing affects them. As an
example, imagine a chess board. Say that white moves a pawn from b1 to
b2, thus not affecting any other piece. It is not simply sufficient to say that

5



2.2 Game Description Language

the position b1 is now blank, and b2 contains a pawn. One must also specify
that each position on the board which is not affected now contains the same
piece as it did on the last turn. This is the Frame Problem, a well known
problem in AI research.

2.2.4 Language design

The Game Description Language can describe a large variety of games be-
cause it does not make many assumptions on the type of gameplay. It sup-
ports any number of players, and is not limited to alternating turn-taking
games. The design of the state vector model kept by the Game Manager
does, however, operate in turns, by design. In a turn, each player must make
a move. In a game where players make move alternately such as in chess this
is modeled by providing a move without any effect, on the other player.

6



3 Combinatorial games

3 Combinatorial games

Combinatorial games are characterised by being finite, deterministic two-
player games. As opposed to classical game theory, in which games are
often games of chance and hardly ever games in the recreational sense, com-
binatorial game theory describes games which are in fact recreational, but
analysed from the perspective of mathematics. The deterministic nature of
the games, which means there is no chance involved in the game, permit
us to try to find not only optimal strategies, but perfect strategies. The
distinction is that optimal strategies, in the sense of classical game theory,
let us play the game as well as the rules let us, but may not always lead to
the desired outcome, since there is chance involved. Perfect strategies, on
the other hand, in the sense of combinatorial game theory, always lead to
the desired outcome. Please note, however, that the desired outcome may
be ’losing’, if there is no possible way of winning.

The only possible outcomes for a player in a strictly combinatorial game
is winning or losing. One does not usually analyse games with the possibility
of a draw because it doesn’t fit cleanly into the theory, but the literature
does make some mention of these types of games. The theory of combinat-
orial games does not include the concept of score, although scores are very
common in recreational (i.e. non-theoretical) combinatorial games. The
theory simply states that a win is a win, regardless of how ’close’ the losing
player was to a win. For the purposes of this master thesis, we will only con-
cern ourselves with games conforming to a strict definition of combinatorial
games.

A games ends when one player cannot make a move. In the so called
normal form of combinatorial games, a player wins when his opponent cannot
make a move. In misère form, a player wins when he himself cannot make a
move.

A combinatorial game can be considered solved when there is a known
efficient way of deciding, for any given state of the game, whether the next
player to move will win, or the previous player that made a move will win,
assuming perfect play.

Throughout the literature and the theory of combinatorial games the two
players of the game are called Left and Right, by convention. The somewhat
unusual and unintuitive names much simplifies the notation of the number
theory of games, of which an introduction may be found in [1].

3.1 Number theory on games

A number system has been developed by John Conway [3] around the notion
of a game to allow us to do much more sophisticated analyses. This number
theory allows us to add, subtract, compare, and solve games, for which we
have calculated the value. For a more complete discussion of this number

7



3.1 Number theory on games

system, see [1].
The value of a game tells us the number of moves to Left’s advantage.

This, however, should not be taken to imply that all games have an integer
value. There are games with values of dyadic rationals, and certain games can
be constructed to take any real value. This number system is not, however,
completely analogous to our ordinary number system. Multiplication and
division, in general, lack any meaningful interpretation and many numbers
lack common and natural properties. Some numbers cannot be compared
to other numbers, because their value is ill-defined. Other numbers can
be shown to be greater than zero, but smaller than any strictly positive
real number. Because of the unusual characteristics of this number system
Donald Knuth suggested that these numbers be called surreal.

According to who will win the game, assuming perfect play, combinatorial
games can be divided into four different classes.

1. The player that makes the opening move loses.

2. Left player wins.

3. Right player wins.

4. The player that makes the opening move wins.

Games of type 1 where the player that makes the opening move loses
are given the value 0, for reasons that will become apparent later. Games
of type 2 where the Left player always wins assuming perfect play are taken
to be > 0 in this number system. Games of type 3 where the Right player
always wins, assuming perfect play are taken to be < 0, symmetrically. The
fourth class of games where the player that makes the opening move wins
does not have any counterpart in our ordinary number system. These games
are denoted by the nimber ∗, and have some unusual characteristics. See 3.4
for more information on nimbers.

It must be noted that when speaking of a combinatorial game, each new
state of the game can be viewed as a separate game. For example, let G be
the game of Go, with no stones on the board. Let the first player place one
stone on the board. Now, one may view this new board state as a game in
itself, and call it G1, for instance. G1 is the same game as G in the sense
that they share the same set of abstract rules, but are different in the sense
that they do not share the same set of possible next states. It is the latter
interpretation that will be of use in the next section.

3.1.1 Operations on games

As games may be regarded as numbers, according to this number system, one
may also perform operations on them. Two of the most important operations

8



3.2 Nim

are addition and subtraction. Multiplication and division of games does not,
in general, have any meaningful interpretation.

Addition of games is done by placing two games beside one another.
When a player is about to make a move, he then decides in which game to
make the move, and then makes it. The other player may then, in the same
way, choose which game to make a move in. He does not need to make his
move in the same game as the previous player. The result of the addition
is another game which ends when both constituent games has ended. There
are other forms of addition, but they are beyond the scope of this thesis.

Negation is an important operation, used when subtracting games. The
negation of a game G is defined as the game H, for which it is true that
G + H = 0. That is, when playing G and H beside one another, the player
that makes the first move will lose, assuming perfect play. The negation of
G is written −G.

Subtraction is done by adding the negation of game to another game.
See [1] and [2] for further reading on operations.

3.2 Nim

Nim is a simple game played with heaps of beans. Each player takes turns
in removing a number of beans from a single heap. A player must remove at
least one bean from a heap, but may remove as many as he wants from one
single heap. He may choose which heap to remove from freely. If he wants,
he may remove all beans from the heap. The game ends when each heap is
empty, since a player can no longer make a valid move.

Firstly, one may observe a few simple strategies. If there is only a single
heap left, the next player will remove the entire heap, and consequently win.
If there are only two heaps, of different sizes, the next player will remove the
number of beans from the larger heap that make the two heaps the same size.
The opponent will then have to remove beans from one heap, making them
different sizes again. Applying this argument repeatedly will lead to a win
for the player that equalizes the heaps, because the opponent will eventually
have to make one heap empty.

3.3 Impartial games

Impartial games are games where both players have the same possible moves
in a given state. Chess, for instance, is partial, because a player can only
move pieces of his own color. Nim, on the other hand, is impartial, since
both players have the same set of moves available.

Impartial games are especially important, because all impartial games
can be regarded as, and played perfectly as, the game Nim. It does not,
however, tell us how we can play the game, as if it were Nim. To do this, we
must find the so called Sprague-Grundy function of the game.

9



3.4 Nimbers

The Sprague-Grundy function is a function that assigns a nimber to
every position of an impartial game. Most commonly, this function is de-
scribed as an explicit formula, shown correct by mathematical analysis. This
is obviously an impractical way of deciding a Sprague-Grundy function in
the context of general game playing, as computers do not have the required
reasoning capabilities. Instead, one may use a more useful method of de-
ciding the Sprague-Grundy function. This method utilizes the game tree,
and assigns a nimber to each node of the tree according to the mex-rule.
The mex-rule is the minimally excluded number rule. It simply states that
the minimally excluded number of a finite set of integers G is the smallest
integer x ≥ 0, such that x /∈ G. Very large game trees may of course make
this infeasible.

3.4 Nimbers

Nimbers are surreal numbers that represent the value of a Nim heap. The
nimber ∗n is the value of a single Nim heap of size n. The notation is
consistent with the rest of the number system, as nimbers are merely several
∗ added together.

Nimbers can be added by the so called Nim Addition Rule, or more
simply by nimber addition. Adding nimbers ∗n1, ∗n2, ..., ∗nk represents the
value of a game of Nim with k heaps of sizes n1, n2, ..., nk. The power of Nim
addition lies in the fact that one can see who will win the game directly from
the Nim value. If the game has value ∗0, then it is a zero game, and the
first player to make a move will lose, assuming perfect play. If the game has
value ∗m for m 6= 0, then the first player to make a move will win, assuming
perfect play.

Adding two nimbers ∗n1 and ∗n2 is done by bitwise addition modulo
2. That is, let the binary representation of n1 be b1

1
b1

2
...b1

m, and the binary
representation of n2 be b2

1
b2

2
..b2

m. Here we assume that m is large enough
to contain both binary representations. If ∗n3 = ∗n1 + ∗n2, and the binary
representation of ∗n3 is b3

1
b3

2
...b3

m, then we have that b3

i
= b1

i
⊕ b2

i
, where ⊕

is addition modulo 2.
For further information on Nim, nimbers, and a proof of the claim that

Nim addition solves Nim, see [1].

3.5 Subtraction games

Subtraction games are similar to Nim. There are a number of heaps and a
player makes his move by removing a number of beans from a heap. However,
in subtraction games a player is not allowed to remove any number of beans.
There is a set of numbers specifying how many beans the player is allowed
to remove from a heap. This set is called the subtraction set. For example.
if the subtraction set is 2, 5, 6, then a player may remove 2, 5, or 6 beans

10



3.6 Perfect strategies

from a heap.
A subtraction game is defined by the initial sizes of the heaps, and the

subtraction set. Since it is an impartial game, it can be solved by applying
the Sprague-Grundy function.

3.6 Perfect strategies

The reason one can make the distinction of games into the four outcome
classes is that combinatorial games are deterministic, perfect information,
two-player games. When a game has been classified according to these
classes, with a perfect strategy made explicit, the game may be considered
solved. Two people aware of the perfect strategy of the game may then set
up the game, decide who begins, and then proclaim one of the players the
winner, without ever making a move.

11



4 Automatic classification

4 Automatic classification

Classification of games based on their properties is the most basic and im-
portant method for analyzing games, and the strategies used to play them.
In the context of general game playing, this is made more difficult, as we do
not know in advance what game we will be playing. Hence, we need methods
for automatic classification of a general game so that appropriate strategies
can be selected to play the game.

This master’s project is limited only to classification of combinatorial
games only. As they are finite, deterministic in their nature, and often
very simple, combinatorial games are very well suited for automatic analysis
and subsequent playing. Games with chance, infinite boards, or incomplete
information are beyond the scope of this project.

As the Game Description Language uses first order logic, it is vital to
have a way of infering logical statements when analysing a game. See section
6 for information on the specific logic engine used in this master’s project.

4.1 Categories

The categories chosen for this project represent the most basic classifications
of games, as they are the most important for choosing a proper strategy.

The categories chosen are

• Two-player games, or not.

• Normal or misère form, or other.

• Partial and impartial games.

• ”All small” games, or not.

A game described by the Game Description Language is here considered to
be combinatorial if and only if it is a two-player game, and in normal or
misère form.

Classification of games into two-player games, or more or less players, is
trivial, but also very important. This will help us in identifying combinat-
orial games as well as providing information for the analysis of subsequent
classes. Here we will not consider games with more than two players that
are equivalent with two player games.

Normal and misère forms of games specify a type of condition that needs
to be fulfilled in order to win the game. In its own right, this is important,
but which form the game is in provides more information than that. It may
be considered counterintuitive, but nevertheless true, that misère games are
much harder to analyze than games in normal form. Thus, if a game is
classified as being in misère form, one may simply choose to abandon any
attempt to solve the game. For a more in depth discussion of this, see [2].

12



4.2 Deciding who is in control

Classifying according to partial and impartial games is also a very broad
and extremely important classification. Showing that a game is impartial is
very helpful as the game then is a variant of Nim.

The category of ”all small” games is the most specific category in this
project. It is somewhat related to the category of partial and impartial
games, as impartial games are well known to be ”all small”. This category
is important because the TERMOSTRAT strategy is used for games with
hot positions, and in all small games, there are no hot positions. The TER-
MOSTRAT strategy is an imperfect, but in practice very good strategy. See
[2] for more information.

4.2 Deciding who is in control

All combinatorial games are alternating turn-based games, which means that
a formal description of a game must keep track of which player may move,
in any given turn. The Game Description Language was designed with a
broader class of games in mind such as games with simultaneous moves,
which, unfortunately, means that it does not specify a built-in way of defining
which player’s turn it is. Since deciding whose turn it is is a very central
question in the analysis of combinatorial games, we must, for every game
we wish to analyse, find the method the particular game uses to decide
whose turn it is. Fortunately, a majority of the games written in the Game
Description Language that are currently available, use similar or exactly the
same method. The most common way of specifying turn-taking is defining
a relation, e.g. (control left), which states that it is player left’s turn
to move. To alternate the turn, one simply makes use of the next relation,
specifying that it is other player’s turn to move next turn. The full code for
doing this then becomes,

(role left)

(role right)

(init (control left))

(<= (next (control right))

(true (control left)))

(<= (next (control left))

(true (control right)))

Since the name control of the relation is merely a common way of doing
it, and not a specified standard, and since names of relations are garbled in
competitions, one cannot simply search for a relation named control. One
can however search for this particular pattern of alternating next relations
with an accompanying relation specifying a player, and thereby correctly

13



4.3 Normal and misère forms

identify this relation as the method of defining turns for the players for a
great majority of games.

Furthermore, since all players must make a move in every turn, as spe-
cified by the Game Description Language and its use, the player whose turn
it is not to move, must have a legal move. This is most commonly solved by
defining a move, often named noop, which does nothing.

(<= (legal left noop)

(not (true (control left))))

(<= (legal right noop)

(not (true (control right))))

No next relations are necessary here, since this move will have no effect.

4.3 Normal and misère forms

When playing a game in normal form, the player last to make a move wins.
More to the point, the player whose turn it is when the terminal condition is
met, has lost, since he has no available moves. The problem of determining
if a game is in normal or misère form is therefore reduced to the problem of
determining which player’s turn it is for all goal conditions.

The Game Description Language specifies that to each player the game
awards between 0 and 100 points. It is natural to assume that being awarded
more points represents winning and less points represent losing, although the
opposite assumption is not unnatural at all. The goal conditions will look
like

(<= (goal 100 left)

.

.

(true (control right))

.

.)

or equivalently,

(<= (goal 100 left)

.

.

(not (true (control left)))

.

.)

In this second example, the logic engine used may need to be supplied some
auxiliary rules that stipulate that if it is not left’s turn, then it is right’s

14



4.4 All small games

turn. One may simply supply these two rules to model this behaviour. This
code is not correct GDL, but is correct KIF, the language that GDL is partly
based on.

(<=> (true (control left)) (not (true (control right))))

(<=> (true (control right)) (not (true (control left))))

To infer which player is in control at the end of the game, what is most simple
is change the direction of the implication arrow of the goal relation. This
is possible since the conditions of the implication are implicitly conjuctions.
When all reversed implications have been stated, one simply specifies that
each goal implication has been achieved, one by one. For each such achieved
implication, one then asks whose turn it is to move.

4.4 All small games

A small game is a game whose value is ∗, or a multiple thereof. These games
do not provide even a single moves advantage for any one player. An ”all
small” game is one in which it is true that for any fixed game state, if one
player has a possible move, then so does the other. They are called ”all
small”, since all positions in the game have small values.

To determine if a game is ”all small”, we first note that each legal move
has a number of conditions associated with it. For a player, and if a game
is ”all small”, the conditions of one of its moves must imply the conditions
of some move for the other player. If there is such an implied move for
all players, then the game is all small. One must note, however, that a
most common condition for the legality of a move is that it is the player in
question, who has the turn. Since we are not interested in turn taking when
analysing whether a game is all small or not, we must disregard this specific
condition. In the Game Description Language, this is most easily done by
redefining the control relation to be true for all players.

Pseudo code for determining if a game is ”all small” or not is in figure 1.

4.5 Partial and impartial games

All small games are relatively easy to classify, as one looks only at the con-
ditions of moves, and determine if they are the same. Classifying games as
being partial or impartial has similar objectives, but is much harder. The
reason for this is that when determining whether a game is partial or im-
partial one must compare the effects of moves. Another problem is that this
analysis must be done for all game states. For this reason, this master’s
project only performs a simple and highly unreliable test for partiality. The
method consists of making a lexical comparison of the moves involved, as
well as the conditions for those moves. The assumption is that moves and

15



4.5 Partial and impartial games

IS-ALL-SMALL-GAME(G)
1 for all moves DL for left
2 do
3 Let C denote the conditions of move DL’s legality in game G
4 b← false
5 for all moves DR for right
6 do
7 Let C

′ denote the conditions of move DR’s legality in game G
8 if conditions C imply C

′

9 then b← true
10 if b = false
11 then return Not all small
12 return All small

Figure 1: Pseudo code to determine if a game is ”all small” or not.

conditions carry different names for different purposes and similar names for
the same purposes.

4.5.1 Weak comparison

The lexical comparison needs to disregard differences in variable names in
GDL expressions, as the names themselves carry no meaning. Therefore,
comparing two expressions is done by a so-called weak comparison. This
weak comparison is a lexical comparison, with the reservation that differ-
ences in variable names is ignored. Future work may choose to extend this
comparison slightly by saying that a variable name may also be equal to a
constant.

The motivation for using this weak comparison is one of pragmatics. It
has proven to be useful in many parts of the analysis of games, and has also
proven to be sufficient for the games tested in this project. However, there
are no theoretical grounds for which to motivate its existence or usefulness.

4.5.2 Determining partiality

In figure 2 and 3 there is pseudo code for determining partiality of a game
as described in the previous sections.

16



4.5 Partial and impartial games

IS-IMPARTIAL(G)
1 for all moves DL for left
2 do for all changes SDL

that DL makes to the state
3 do hasEquivalentMove← FIND-EQUIVALENT-MOVE(right, SDL

)
4 if hasEquivalentMove = false
5 then return PARTIAL
6 return IMPARTIAL

Figure 2: Pseudo code to determine if a game is impartial or not.

FIND-EQUIVALENT-MOVE(player, S)
1 for all moves D for player
2 do for all changes SD that D makes to the state
3 do if comparesWeakly(S, SD)
4 then return true
5 return false

Figure 3: Pseudo code to find an equivalent move available to a specified
player.

17



5 Solving subtraction games

5 Solving subtraction games

This work is done from the perspective of game theory, and thus seeks to
find an exact solution to a game. Because of this, we do not use artificial
intelligence techniques to find heuristics or seemingly advantageous paths
in the game, but determine the structure of the game and perform game
theoretic analysis on it.

Solving general combinatorial games is a very hard task to undertake, so
it is necessary to restrict the types of games one attempts to solve. Subtrac-
tion games constitute a relatively simple, but yet interesting class of games.

The approach used here to solve general games can be viewed as having
two distinct parts. The first part is the general game analysis in which the
rules of the games are analysed to determine what type of game it is, and
how the game is played. The second part is the game theoretic analysis in
which one uses the knowledge gained from the first part, on how the game
is played, to determine a solution to the game.

A solution is a way of deciding, for each position played, what moves
are perfect. This knowledge would allow a player to play the game in a
perfect way. It is not necessary, and perhaps often infeasible, to construct
an explicit solution in which each possible position in the game is listed and
paired with the perfect moves from that position. Instead, one may choose
to represent the solution as an oracle, that takes as input a game position,
and responds with one or several perfect moves. The oracle can then avoid
calculating perfect moves for each possible game position, and instead do
only those calculations that are necessary. For board games, in which the
number of possible positions can be very large, this may be the only feasible
option.

5.1 Subtraction games

When solving general subtraction games, this master’s project uses a slightly
generalised notion of subtraction games. In a combinatorial subtraction
game, there exist a number of heaps, and there is a subtraction set, de-
fining the set of legal moves, which is the same for all heaps. However, in
this project, each heap may have its own subtraction set, and none of the
subtraction sets need to be equal. The reason for this slight generalisation is
that it can be done without making the analysis significantly more complex.
This is discussed further in section 5.4.1.

5.2 General game analysis

The approach used here for general game solving is that of recognizing a set
of games which we know how to solve. In this master’s project, we only solve
subtraction games. This approach is more similar to the expert system of the

18



5.2 General game analysis

chess playing Deep Blue than the learning system of TD-Gammon, which was
previously highlighted as a good example of an artificial intelligence system.
On the other hand, while Deep Blue can only play chess, this system can
solve a set of games.

5.2.1 Recognizing arithmetic

Neither the concept of integers, nor the concept of arithmetic is built into the
Game Description Language. Because of this fact each game designer must
implement arithmetic using the facilities in GDL, when needed. Naturally,
subtraction games need a way to model subtraction. The standard way of
modeling arithmetic in GDL is a relation most often called succ. What
this relation usually does is define a total ordering of constants so that they
may be used for comparison. The way one defines the succ relations is by
defining, for a constant, what constant follows in the total ordering. In the
Game Description Language, this is written in the following way,

(succ 0 1)

(succ 1 2)

(succ 2 3)

.

.

.

(succ 8 9)

(succ 9 10)

It is worth noting that the use of numbers in this example is for conveni-
ence only. The numbers are in fact interpreted as string constants, without
any meaning. Hence, a game designer may choose to use arbitrary constants
in place of numbers, such as

(succ a k)

(succ k c)

(succ c q)

The specification of the Game Description Language states that each
game must be representable by finitely many relations. It specifically forbids
a game designer from using unbounded recursion. Also, since constants
written as numbers carry no meaning, one must specify an explicit name for
each element in the ordering. Because of this, using recursion to define a total
ordering of numbers is not possible. This means that a game designer must
explicitly state the ordering of the elements, and also their constant names,
and hence that the order must be finite. This is why the method shown
above is considered to be the most natural way of defining arithmetic.

Automatic recognition of such relations is based on the fact that they
define a finite total ordering (with a beginning and an end), with connected
constants. The following conditions define these relations.

19



5.3 General subtraction game analysis

• It carries two arguments

• Relates at least three pairs of values

• There is exactly one constant s for which there is no s’, such that
(succ s’ s).

• There is exactly one constant e for which there is no e’, such that
(succ e e’).

• For any constant, call it b, except for s, there is exactly one constant
a for which it holds that (succ a b).

• For any constant, call it b, except for e, there is exactly one constant
c for which it holds that (succ b c).

The conditions that require that it relates at least three values is used to
filter relations that only relate one or two values, and trivially satisfies the
other conditions. The rest of the conditions state that the ordering has a
beginning and an end, and that every element has a unique element in front
of it and a unique element after, except start and end, respectively.

5.3 General subtraction game analysis

The core components in a subtraction game are the piles and the subtraction
set. To continue with solving the subtraction game, one needs to determine
the following things.

• The number of piles.

• The size of each pile.

• The subtraction set for each pile.

The difficulty here, as in all general game analyses, is to determine how
the author of the game description chose to model the different components
of the game.

5.3.1 Models of heaps

A heap is modeled by assigning a heap identifier with the current size of
the heap. In the simplest case, this would look like (heap 7). The heap
identifier is the name heap of the relation, and 7, of course, represents the
size.

When dealing with subtraction games with several heaps it may be easier
to create an indexed heap relation instead. With this method, one instead
gives the heap relation two arguments: the index of the heap, and its size.
This is similar to the technique for creating boards. This will look like

20



5.3 General subtraction game analysis

(heap 3 7), which refers to the third heap, and its size 7. Of course, there
is no reason why the index must be the first argument, and the size to be
the second. However, most games using boards have been written so that
each board position is referenced by their coordinates first, and the piece on
the board position last, like (cell ?x ?y pawn). This indicates that it is
natural for people to write indexed relations in this order.

When determining what heaps are present in a game, observe that the
heap relations must be initialised by an init relation so that each heap
has an initial size. Thus, to determine the heap structure, one looks at
all initialised relations, and determines if they match any of the templates
(<name> <integer-size>) or (<name> <integer-index> <integer-size>).
To do this, one must first have analysed the relation defining arithmetic in
order to recognize integers.

In the implementation of this type of modeling of heaps, the software
recognizes the heap relations by the templates described above, and stores
them in a structure. This structure allows for retrieving objects representing
heaps based on a relation, bearing reference to those heaps. In this way, it
is simple to later assign subtraction sets on a per-heap basis.

5.3.2 Determining subtraction sets

The subtraction set is modeled by the legal moves in the game. There are two
obvious ways of modeling a move in a subtraction game. The first one is to
specify by what amount to subtract a heap. Call this a relative subtraction
move. The second way is to specify to what value one wishes to subtract to.
Call this an absolute subtraction move.

For each legal relation, collect all next relations relevant to this move.
Determine what variable represents the current size of the heap. In an ab-
solute subtraction move, this must be present in the conditions of the legal

relation. Call this variable ?source. In the next relation, one will find the
variable representing the size of the heap after the move has been made. Call
this variable ?target. The goal is to create a graph for a legal relation and
all its relevant next relations, representing all possible subtractions. A node
in this graph will be a variable name, and an edge in this graph, from, say,
node ?a to ?b?, will be created after finding a succ relation (succ ?b ?a).
Note the order of these variables.

The following piece of code is from the game 21 and serves to exemplify
how a subtraction graph is built.

(<= (legal ?player (move ?x))

(true (control ?player))

(open)

(pmove ?x))

21



5.3 General subtraction game analysis

(<= (pmove ?x)

(true (value ?y))

(succ ?x ?y))

(<= (pmove ?x)

(true (value ?y))

(succ ?x ?a)

(succ ?a ?y))

(<= (pmove ?x)

(true (value ?y))

(succ ?x ?a)

(succ ?a ?b)

(succ ?b ?y))

(<= (next (value ?x))

(does ?player (move ?x)))

For each legal relation, build a list of all succ relations that are condi-
tions for the legal relation in question. In the example above, this would
include all succ relations in the three pmove implications. One must take
special care with the relation (true (value ?y)), as this represents the
source value. For each occurrence of the source variable name, rewrite it to
use the ?source variable name instead. One would then expect the above
example to look like

(<= (legal ?player (move ?x))

(true (control ?player))

(open)

(pmove ?x))

(<= (pmove ?x)

(true (value ?source))

(succ ?x ?source))

(<= (pmove ?x)

(true (value ?source))

(succ ?x ?a)

(succ ?a ?source))

(<= (pmove ?x)

(true (value ?source))

(succ ?x ?a)

(succ ?a ?b)

22



5.3 General subtraction game analysis

(succ ?b ?source))

(<= (next (value ?x))

(does ?player (move ?x)))

If the code is written with relative subtraction moves, then the succ

relations will be found in the next-relation connected with the legal relation
in question. The following method will be exemplified by extracting the succ
relations from a legal relation, but will work in the same way if extracted
from a next-relation. The software built for this master’s project attempts
to interpret moves in both ways, and determines which way provides a valid
subtraction move.

In order to create the list of succ relations one must take care with
clashing variable names. The argument in each implication must be renamed
to the argument in the use of this relation. In the legal relation

(<= (legal ?player (move ?x))

(true (control ?player))

(open)

(pmove ?x))

the argument to pmove is ?x. In each implication of pmove the argument
must then be replaced. In this example, however, the argument name in the
pmove relation is the same as all the arguments in the pmove implications.
All variable names internal to each implication must be renamed to have
unique names in the current context.

After the list has been constructed, one can build a subtraction graph
from it. The graph is built by simply going through each succ relation,
create a node for each argument, if they do not already exist in the graph,
and connect and edge from the second argument to the first. In the above
example, the list would look something like

(1) (succ ?x ?source)

(2) (succ ?x ?1_a)

(3) (succ ?1_a ?source)

(4) (succ ?x ?2_a)

(5) (succ ?2_a ?3_b)

(6) (succ ?3_b ?source)

Here, unique names for internal variables were created by prepending the
variable name with a serial number and an underscore. On line 1, the succ

relation represent the possible move of subtraction by one. That is, the target
value ?x is immediately followed by ?source in the total ordering. One line
2 and 3, the succ relations represent the possible move of subtracting by
two. The target value ?x is followed by a variable ?1_a, which in turn is
followed by ?source. Subtraction by three is similarly represented by lines
4-6.

23



5.3 General subtraction game analysis

5.3.3 Subtraction graph

Another way of representing the list of collected succ relations is by the
subtraction graph in Figure 4.

?s

?1_a

?x

?3_b ?2_a

Figure 4: Subtraction graph for subtraction set {1, 2, 3}

This graph represents the relationships of all variables, as determined
by the collection of succ relations. From a graph like this it is possible to
do a search and determine all the distances of all paths from the source ?s

to the target node ?x. These distances are then the different subtraction
amounts made possible by this legal relation. In this example, it is evident
that the distances are 1, 2, and 3. The subtraction graph is built as a
way to succinctly represent subtraction moves. To determine what moves
are encoded in this graph, one must determine all distances from the source
node to the target node. To do this, keep a set of distances for each node. Do
a depth first search, beginning at the source node, and for each node, add its
parents’ distance plus one. The target node will then have a set containing
the distances of all paths from the source node. This is the subtraction set.
The pseudo code in figure 5 is a simple search algorithm for doing this.

AllPathsDistance(G, s, t)
1 distances[s] = 0
2 stack.push(s)
3 while stack 6= ∅
4 do m = stack.pop()
5 for all neighbours n to m
6 do for ∀d ∈ distances[m]
7 do distances[n] = distances[n] ∪ {d + 1}
8 stack.push(n)
9 return distances[t]

Figure 5: Pseudo code for determining all distances from a source to a target
node.

24



5.4 Game theoretic analysis

Sprague-Grundy(k)
1 nimseq[0]← 0 # nimseq[0]← 1 for misere games
2 for i← 1 to k
3 do for each s in S
4 do if i− s ≥ 0
5 then M ←M ∪ nimseq[i− s]
6 nimseq[i]← mex(M)
7 return nimseq

Figure 6: Pseudo code for the Sprague-Grundy function of a subtraction
game.

5.4 Game theoretic analysis

Once a game has been recognized, and all its components found and analysed,
one may start the game theoretic analysis. It is the goal of this analysis
to calculate a solution to the game so that one may choose advantageous
moves. In combinatorial impartial games, the concept of P-positions and
N -positions provides one basic way of choosing perfect moves. In case one
needs to combine several such games, or combine several parts of games,
P-positions and N -positions do not carry enough information, and so one
needs to use the Sprague-Grundy function instead.

5.4.1 Subtraction game theoretic analysis

The game theoretic analysis of subtraction games is very simple. Once the
general game analysis has determined the subtraction set for each pile, a
simple application of the Sprague-Grundy function solves the game.

First, the analysis must be given information on the form of the game,
that is, if it is in normal or misère form. This problem is in the domain of
classification of combinatorial games, described in previous chapters.

When form and subtraction sets are known, the Sprague-Grundy function
can be applied to each heap. The Sprague-Grundy function will assign a
nimber, or Nim value, to each possible size of the heap. A player can then
ask for the Nim value of a specific position in the game. A position in a
subtraction game is the current sizes of all heaps. If there is more than one
heap, the oracle will add the nimbers of each heap, and return the result to
the player.

For a game in normal form, and a heap of initial size k the application
of the Sprague-Grundy function works as in figure 6. Let nimseq[i] be the
nim value of the heap at size i. The goal of the Sprague-Grundy function is
to fill in this structure from i = 0 to i = k. Let S be the subtraction set,
and let mex(M) calculate the minimally excluded number of set M.

25



6 Implementation

6 Implementation

In this section, the implementation of the methods of classification and solv-
ing of combinatorial is discussed.

6.1 Grammar of the Game Description Language

In the specification of the Game Description Language no formal grammar
is provided. This means that different implementations of software using
GDL may use slightly different grammars. Therefore, the grammar used for
this master’s project is presented as an appendix. This grammar is quite
specialised and may not be suitable for general use.

6.2 Game suite

The game suite used to test the methods and software in this master’s pro-
ject needed to be created, since none of the available games written in the
Game Description Language were appropriate combinatorial games. The
suite consists of seven different types of games, some with several variants.
The games are

• SG{1,2,3} is a subtraction game with a single pile of initial size 21, and
with the subtraction set {1, 2, 3}. There are two flavors of SG{1,2,3}.
One is in normal form, and the other is in misère form.

• ”SG{1,2}{1,5} single” is a subtraction game with two heaps of initial
sizes 7 and 11. Here, the first heap of initial size 7 has the subtraction
set {1, 2}, while the second heap has the subtraction set {1, 5}. This
is a game which tests the generalisation of subtraction games.

• Clobber is a popular combinatorial game. It is played on a board with
black and white stones. A player makes a move by taking a stone of
his own color and placing it on an adjacent (not diagonally) cell, where
there is a stone of the opposite color. The stone of the opposite color
is then removed from the board. This game is partial, but all small.
The current implementation is in misère form.

• Kayles is played with a row of skittles. A player makes a move by
knocking down one skittle, or two adjacent skittles. This game is im-
partial, and in normal form.

• Domineering is played on a board with domino pieces. One player
makes his moves by placing the domino pieces horizontally along the
board, always covering two adjacent positions. The other player makes
his moves by placing the domino vertically along the board, also always
covering two adjacent positions.

26



6.2 Game suite

• Fox and geese is played on a 8x8 board. One player controls the fox,
which starts in the upper half of the board. The other player controls
four geese, whose objective it is to capture the fox. All pieces move
diagonally, one square per turn, and one piece per turn. The fox is
captured when the geese blocks his only possible moves. This game is
partial and not all small.

• Turning turtles is a game in which there is a line of turtles, all on their
feet. The objective is to turn all turtles onto their backs. The rules
are that a player must flip a turtle from his feet to his back, and may
optionally choose to flip any turtle, to the right of the first turtle. The
player that first cannot flip a turtle onto his back, because all turtles
already are on their backs, loses.

The game codes for these games are presented as appendices.

6.2.1 Classification of the game suite

When presented with these games, the classification software gives these
results. In table 1, the games SG{1,5,7} and SG{3,5,7} are considered to be

Table 1: Classification of games in the test suite
Game Players Form Partiality All small

Clobber 2 Misère Impartial All small
Kayles 2 Normal Impartial All small

Fox and geese 2 Unknown Partial Not all small
Turning turtles 2 Unknown Impartial All small
Domineering 2 Normal Partial Not all small

SG{1,2,3} (normal form) 2 Normal Impartial All small
SG{1,2,3} (misère form) 2 Misère Impartial All small

SG{1,2}{1,5} single 2 Normal Impartial All small
SG{1,2,5} (and variants) 2 Normal Impartial All small

variants of SG{1,2,5}, since very little code differs between them. They have
the exact same classifications.

6.2.2 Misclassifications

Clobber was here misclassified as impartial, but correctly classified as all

small. As evidenced by the following code, this implementation of Clobber
uses a trick, in which the name of the player becomes a marker in a board
position.

(<= (next (cell ?fx ?fy blank))

(does ?p (move ?fx ?fy ?tx ?ty)))

27



6.2 Game suite

(<= (next (cell ?tx ?ty ?p))

(does ?p (move ?fx ?fy ?tx ?ty)))

(<= (next (cell ?x ?y ?v))

(does ?p (move ?fx ?fy ?tx ?ty))

(true (cell ?x ?y ?v))

(or (distinct ?x ?fx) (distinct ?y ?fy))

As the analysis of partiality of a game is superficial, it will not be able to see
that the effects of the move is dependent on the player name. This analysis
will simply see that the next relations will look similar for both players, and
then incorrectly assume that it is impartial. A better analysis of partiality
might check explicitly if the next relation uses the player name variable, and
if so, mark it as partial. However, this is merely a special case, and is not a
general test of partiality.

6.2.3 Solving the game suite

These are the results when attempting to solve the subtraction games in the
suite. In the tables, each heap in the game is presented on its own row. In
each row, the size of the heap and its Nim sequence is presented.

Table 2: Nim sequence of game SG{1,2,5}
Heap Size Nim sequence

1 10 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1
2 11 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2
3 12 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0

Table 3: Nim sequence of game SG{1,5,7}
Heap Size Nim sequence

1 10 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
2 11 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
3 12 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0

Table 4: Nim sequence of game SG{1,2,3} (all variations)

Heap Size Nim sequence

1 21 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1

6.2.4 Failed cases

There are a number of identified cases where these methods of solving sub-
tracton games fail. Here we describe the incorrect output and discuss why

28



6.2 Game suite

Table 5: Nim sequence of game SG{1,2}{1,5} single
Heap Size Nim sequence

1 7 0, 1, 2, 0, 1, 2, 0, 1
2 11 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

these games fail.

Table 6: Nim sequence of game SG{1,5,7} nonzero

Heap Size Nim sequence

1 10 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
2 11 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
3 12 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0

In the game ”SG{1,5,7} nonzero”, the ending condition is that each heap
has size two. Hence, the Nim sequences are incorrect, as they start at size
zero. This problem is coupled with the difficulty of assigning integer numbers
to the constants defined by the succ relations. Here, we assign the value zero
to the first succ constant, and make the assumption that the heaps may
assume any size. This will be a problem when the game designer chooses to
define integer constants in addition to the range used by the heaps.

Table 7: Nim sequence of game SG{1,2}{1,5}

Heap Size Nim sequence

1 7 0, 1, 2, 0, 1, 2, 0, 1
2 11 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2

The game SG{1,2}{1,5} in table 7, has two heaps each of which have
their own subtraction set. The first heap has the subtraction set {1, 2},
while the second heap has the subtraction set {1, 5}. However, the analysis
fails as it assigns the subtraction set {1, 2, 5} to both heaps. The reason this
happens is because of how the rules for legal moves are written. See figure 7
for pseudo-code from the game SG{1,2}{1,5}.

In figure 7 it can be seen that the legal relation accepts a move in the
form (move ?idx ?v), where ?idx is the index of the heap (1 or 2) and ?v

is the value of the heap. The decision of whether this is a legal move is
delegated to the relation pmove, which decides that it is legal if ?idx is 1
and ?v is the current value subtracted by one or two, or, if ?idx is 2 and
?v is the current value subtracted by one or five. The problem is that the
software, when it builds its subtraction graph, searches for the conditions of
a relation matching (pmove ?idx ?v). Since it does not know the value of
any of these two arguments, it matches every constant to these arguments.

29



6.2 Game suite

Hence, for the legal relation all four different pmove implementations are
matched, regardless of heap, and so incorrectly assigns the subtraction set
{1, 2, 5} to all players.

This case could be accounted for, if a more careful analysis was made.
One could start the analysis by looking at each next relation and thereby
being able to assign a value to ?ìdx.

30



6.2 Game suite

(<= (legal ?player (move ?idx ?v))

(pmove ?idx ?v)

(open)

(true (control ?player)))

;; Subtraction set of heap 1

;; Subtraction by 1

(<= (pmove 1 ?v)

(true (heap 1 ?oldv))

(succ ?v ?oldv))

;; Subtraction by 2

(<= (pmove 1 ?v)

(true (heap 1 ?oldv))

(succ ?v ?a)

(succ ?a ?oldv))

;; Subtraction set of heap 2

;; Subtraction by 1

(<= (pmove 2 ?v)

(true (heap 2 ?oldv))

(succ ?v ?oldv))

;; Subtraction by 5

(<= (pmove 2 ?v)

(true (heap 2 ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?oldv))

(<= (next (heap 1 ?v))

(does ?player (move 1 ?v)))

(<= (next (heap 2 ?v))

(does ?player (move 2 ?v)))

Figure 7: Pseudo code from game SG{1,2}{1,5}

31



7 Conclusions

7 Conclusions

Here the overall results of this master’s project are presented. First the
results and methods of the classification are discussed followed by results and
methods of solving subtraction games. Finally, there is a general discussion
on general game playing and the GDL framework.

7.1 Classification

The results for classification of each different property is presented here.
A general and significant problem when classifying combinatorial games

is the multitude of ways in which to interpret and model certain aspects
of a game. Often, combinatorial games can be interpreted in their ”pure”
theoretical form, or in a recreational way. This causes slight differences in
how aspects of the games are written.

7.1.1 Normal and misère form

Classification of a game according to normal or misère forms is subject to the
many ways in which one can determine how a game has ended. For instance,
imagine the game of chess written in GDL. Chess is a combinatorial game
in normal form, if you remove the possibility of a draw, but will most likely
not be written as such. The terminal condition will most likely be that one
player puts the other in check mate. However, a more ”pure” combinatorial
interpretation would be that the game ends one turn later, when one player
cannot move because being in check mate implies that one does not have
a valid move. Because of this, the methods presented for classification of
the form of combinatorial games will most likely fail for any game of chess.
Similar arguments can be made for practically any other game.

7.1.2 All small games

As GDL uses first order logic, the task of determining whether a game is ”all
small” is made rather easy. Making logical deductions based on the condi-
tions of a move provides a simple yet effective way of determining whether
an opposing player has a corresponding move.

This method is very specific to GDL and its first order logic representa-
tion of games.

7.1.3 Partial and impartial games

The method presented for determining whether a game is partial or impartial
cannot be considered sufficient for any application. The solution is based
solely on loose assumptions on syntactical properties of partial and impartial

32



7.2 Solving subtraction games

games. However, determining partiality is no easy task as a great deal of
interpretation is involved.

7.2 Solving subtraction games

As a result of the Game Description Languages unrestricted language struc-
tures, the success of trying to solve a general subtraction game is heavily
dependent on how the game was written. For instance, a heap may be
represented in a number of ways in the game code. This master project’s
solution only accounts for two of those ways, with the motivation that these
two seemingly are the most obvious.

The use of arithmetic is naturally an important part of any subtraction
game. If the methods of arithmetic cannot be properly analysed, then the
remaining parts of the subtraction game solution will fail. In this light, it can
be argued that the absence of arithmetical operations in GDL is a serious
flaw.

The tests performed on this solution and the difficulties pointed out
clearly show that these methods cannot be used to provide a general solution
to the problem. Most parts of the solution require that the game designer use
highly specific syntactical and semantic structures when writing the game
code. In the absence of a more specialised general game playing framework,
however, this must be expected.

The analysis above does not take into account the terminal condition
placed on the game. In a subtraction game, the terminal condition will most
commonly be that all heaps are empty.

7.3 General game playing and GDL

The use of the Game Description Language framework for combinatorial
games results in a number of difficulties. A major difficulty rests in that
GDL can be viewed as being designed for software that maintains a set of
true statements about a game and, in each turn, chooses a move based on
these statements. This does not work very well with the game theoretic
view assumed in this master’s project. A game theoretic view defines a set
of rules applicable to a any valid game position, while the Game Description
Language can only define rules for a specific game position. Translating from
GDL to the game theoretic view appears to be difficult.

7.4 Future work

What follows are suggestions for further work.

33



7.4 Future work

7.4.1 Classification of cyclic games

An important classification of games not used here is cyclic or acyclic games.
A cyclic game is a game where a specific game state may occur on several
occasions during the game. This opens up the possibility of infinite play.
Combinatorial games are by definition acyclic, that is, one can never reach
the same game state twice in a game.

34



REFERENCES

References

[1] E. Berlekamp, J. Conway, and R. Guy. Winning ways for your Mathem-

atical Plays, volume 1. A. K. Peters, 2nd, edition, 2004.

[2] E. Berlekamp, J. Conway, and R. Guy. Winning ways for your Mathem-

atical Plays, volume 2. A. K. Peters, 2nd, edition, 2004.

[3] J. Conway. On Numbers And Games. Academic Press Inc., 1976.

[4] N. Love, T. Hinrichs, and M. Genesereth. General Game

Playing: Game Description Language Specification, April 2006.
http://games.stanford.edu/gdl_spec.pdf.

[5] B. Pell. Metagame: A new challenge for games and learning. Internet,
1992. http://www.barneypell.com/papers/metagame-olympiadUCAM-
CL-TR-276.pdf.

[6] G. Tesauro. Temporal difference learning and td-gammon. Communic-

ations of the ACM, 38(3), March 1985. Website viewed 21 June, 2006,
http://www.research.ibm.com/massive/tdl.html.

35



A Game rules

A Game rules

A.1 Clobber
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role white)

(role black)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Initialise board.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (cell 1 1 white))

(init (cell 1 2 black))

(init (cell 1 3 white))

(init (cell 1 4 black))

(init (cell 2 1 black))

(init (cell 2 2 white))

(init (cell 2 3 black))

(init (cell 2 4 white))

(init (cell 3 1 white))

(init (cell 3 2 black))

(init (cell 3 3 white))

(init (cell 3 4 black))

(init (cell 4 1 black))

(init (cell 4 2 white))

(init (cell 4 3 black))

(init (cell 4 4 white))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; White player begins.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control white))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?p (move ?fx ?fy ?tx ?ty))

(canmove ?p ?fx ?fy ?tx ?ty))

(<= (legal ?p noop)

(true (control ?q))

(distinct ?p ?q))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (cell ?fx ?fy blank))

(does ?p (move ?fx ?fy ?tx ?ty)))

(<= (next (cell ?tx ?ty ?p))

(does ?p (move ?fx ?fy ?tx ?ty)))

(<= (next (cell ?x ?y ?v))

(does ?p (move ?fx ?fy ?tx ?ty))

(true (cell ?x ?y ?v))

(or (distinct ?x ?fx) (distinct ?y ?fy))

(or (distinct ?x ?tx) (distinct ?y ?ty)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control white))

(true (control black)))

(<= (next (control black))

(true (control white)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Normal form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal white 0)

(true (control black)))

(<= (goal black 0)

(true (control white)))

(<= (goal white 100)

(true (control white)))

(<= (goal black 100)

(true (control black)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (terminal)

(not (canmove ?p ?fx ?fy ?tx ?ty)))

(<= (canmove ?p ?fx ?fy ?tx ?ty)

(true (control ?p))

(adjacent ?fx ?fy ?tx ?ty)

(true (cell ?fx ?fy ?p))

(true (cell ?tx ?ty ?q))

(distinct ?q ?p)

(distinct ?q blank))

(<= (adjacent ?x1 ?y ?x2 ?y)

(adjacent ?x1 ?x2))

(<= (adjacent ?x1 ?y1 ?x2 ?y2)

(adjacent ?y1 ?x1 ?y2 ?x2))

(adjacent 1 2)

(adjacent 2 3)

(adjacent 3 4)

(<= (adjacent ?x ?y)

(adjacent ?y ?x))

36



A.2 Domineering

A.2 Domineering

(role updown)

(role leftright)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; 3x4 board

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (cell 1 1 b))

(init (cell 1 2 b))

(init (cell 1 3 b))

(init (cell 1 4 b))

(init (cell 2 1 b))

(init (cell 2 2 b))

(init (cell 2 3 b))

(init (cell 2 4 b))

(init (cell 3 1 b))

(init (cell 3 2 b))

(init (cell 3 3 b))

(init (cell 3 4 b))

(init (control updown))

(succ 1 2)

(succ 2 3)

(succ 3 4)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Checks if the board is marked blank,

;; at coordinates (x,y) and (x,y-1)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (freedown ?x ?y)

(true (succ ?w ?y))

(true (cell ?x ?y b))

(true (cell ?x ?w b)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Checks if the board is marked blank,

;; at coordinates (x,y) and (x-1,y)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (freeside ?x ?y)

(true (succ ?v ?x))

(true (cell ?x ?y b))

(true (cell ?v ?y b)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Moving at (x,y) is legal for updown,

;; if (x,y) and (x,y-1) are both blank.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal updown (move ?x ?y))

(freedown ?x ?y)

(true (control updown)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Moving at (x,y) is legal for leftright,

;; if (x,y) and (x-1,y) are both blank.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal leftright (move ?x ?y))

(true (freeside ?x ?y))

(true (control leftright)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Noop moves

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal leftright noop)

(true (control updown)))

(<= (legal updown noop)

(true (control leftright)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Mark appropriate cells as set,

;; when a player makes his move.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (cell ?x ?y s))

(does updown (move ?x ?y)))

(<= (next (cell ?x ?w s))

(does updown (move ?x ?y))

(true (succ ?w ?y)))

(<= (next (cell ?x ?y s))

(does leftright (move ?x ?y)))

(<= (next (cell ?v ?y s))

(does leftright (move ?x ?y))

(true (succ ?v ?x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; State that untouched cells retain

;; their mark

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (cell ?x ?y b))

(true (cell ?x ?y b))

(does updown (move ?w ?v))

(distinct ?x ?w)

(distinct ?y ?v)

(succ ?m ?v)

(distinct ?m ?y))

(<= (next (cell ?x ?y b))

(true (cell ?x ?y b))

(does leftright (move ?w ?v))

(distinct ?x ?w)

(distinct ?y ?v)

(succ ?m ?w)

(distinct ?m ?x))

(<= (next (cell ?x ?y s))

(true (cell ?x ?y s)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Alternating turns

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control leftright))

(true (control updown)))

(<= (next (control updown))

(true (control leftright)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Goal and terminal relations

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal updown 100)

(true (control leftright)))

(<= (goal updown 0)

(true (control updown)))

(<= (goal leftright 100)

(true (control updown)))

(<= (goal leftright 0)

(true (control leftright)))

(<= terminal

(true (control updown))

(not (freedown 1 1))

(not (freedown 2 1))

(not (freedown 1 2))

(not (freedown 2 2))

(not (freedown 1 3))

(not (freedown 2 3))

(not (freedown 1 4))

(not (freedown 2 4)))

(<= terminal

(true (control leftright))

(not (freeside 1 2))

(not (freeside 1 3))

(not (freeside 1 4))

(not (freeside 2 2))

(not (freeside 2 3))

(not (freeside 2 4))

(not (freeside 3 2))

(not (freeside 3 3))

(not (freeside 3 4)))

37



A.3 Kayles

A.3 Kayles

(role left)

(role right)

(init (skittle 1 up))

(init (skittle 2 up))

(init (skittle 3 up))

(init (skittle 4 up))

(init (skittle 5 up))

(init (skittle 6 up))

(init (skittle 7 up))

(init (control left))

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Check if you can remove a single

;; skittle at coordinate a,

;; or two skittles at coordinate a

;; and a+1

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (one ?a)

(skittle ?a up))

(<= (two ?a)

(skittle ?a up)

(succ ?a ?b)

(skittle ?b up))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Legal moves

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?player (single ?a))

(true (one ?a))

(true (control ?player)))

(<= (legal ?player (double ?a))

(true (two ?a))

(true (control ?player)))

(<= (legal left noop)

(true (control right)))

(<= (legal right noop)

(true (control left)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Removing skittles

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (skittle ?a down))

(does ?player (single ?a)))

(<= (next (skittle ?a down))

(does ?player (double ?a)))

(<= (next (skittle ?b down))

(does ?player (double ?a))

(succ ?a ?b))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Maintaining untouched skittles

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (skittle ?a up))

(true (skittle ?a up))

(does ?player (single ?b))

(distinct ?a ?b))

(<= (next (skittle ?a up))

(true (skittle ?a up))

(does ?player (double ?b))

(succ ?b ?c)

(distinct ?a ?b)

(distinct ?a ?c))

(<= (next (skittle ?a down))

(true (skittle ?a down)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Alternating turns

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control left))

(true (control right)))

(<= (next (control right))

(true (control left)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Goal and terminal relations

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal left 100)

(true (control right)))

(<= (goal left 0)

(true (control left)))

(<= (goal right 100)

(true (control left)))

(<= (goal right 0)

(true (control right)))

(<= terminal

(true (skittles 1 down))

(true (skittles 2 down))

(true (skittles 3 down))

(true (skittles 4 down))

(true (skittles 5 down))

(true (skittles 6 down))

(true (skittles 7 down)))

38



A.4 Turning turtles

A.4 Turning turtles

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role left)

(role right)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Initialise board.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (turtle 1 feet))

(init (turtle 2 feet))

(init (turtle 3 feet))

(init (turtle 4 feet))

(init (turtle 5 feet))

(init (turtle 6 feet))

(init (turtle 7 feet))

(init (turtle 8 feet))

(init (turtle 9 feet))

(init (turtle 10 feet))

(init (turtle 11 feet))

(init (turtle 12 feet))

(init (turtle 13 feet))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Left player begins.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control left))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?p (turn ?x))

(true (control ?p))

(true (turtle ?x feet)))

(<= (legal ?p (turn ?x ?y))

(true (control ?p))

(true (turtle ?x feet))

(succ ?y ?x))

(<= (legal ?p noop)

(true (control ?q))

(distinct ?p ?q))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (turtle ?x back))

(or (does ?p (turn ?x)) (does ?p (turn ?x ?y))))

(<= (next (turtle ?y back))

(does ?p (turn ?x ?y))

(true (turtle ?y feet)))

(<= (next (turtle ?y feet))

(does ?p (turn ?x ?y))

(true (turtle ?y back)))

(<= (next (turtle ?z ?v))

(or (does ?p (turn ?x)) (does ?p (turn ?x ?y)))

(true (turtle ?z ?v))

(distinct ?x ?z)

(distinct ?y ?z))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control left))

(true (control right)))

(<= (next (control right))

(true (control left)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal ?p 100)

(true (control ?q))

(distinct ?p ?q))

(<= (goal ?p 0)

(true (control ?p)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not (true (turtle ?x feet))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Arithmetic.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

(succ 12 13)

39



A.5 Fox and geese

A.5 Fox and geese

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role fox)

(role goose)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Initialise board.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (cell 1 2 goose))

(init (cell 1 4 goose))

(init (cell 1 6 goose))

(init (cell 1 8 goose))

(init (cell 2 1 empty))

(init (cell 2 3 empty))

(init (cell 2 5 empty))

(init (cell 2 7 empty))

(init (cell 3 2 empty))

(init (cell 3 4 empty))

(init (cell 3 6 empty))

(init (cell 3 8 empty))

(init (cell 4 1 empty))

(init (cell 4 3 empty))

(init (cell 4 5 empty))

(init (cell 4 7 empty))

(init (cell 5 2 empty))

(init (cell 5 4 empty))

(init (cell 5 6 empty))

(init (cell 5 8 empty))

(init (cell 6 1 empty))

(init (cell 6 3 empty))

(init (cell 6 5 empty))

(init (cell 6 7 empty))

(init (cell 7 2 empty))

(init (cell 7 4 empty))

(init (cell 7 6 empty))

(init (cell 7 8 empty))

(init (cell 8 1 empty))

(init (cell 8 3 empty))

(init (cell 8 5 fox))

(init (cell 8 7 empty))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Fox begins.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control fox))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal fox (move ?fx ?fy ?tx ?ty))

(foxmove ?fx ?fy ?tx ?ty))

(<= (legal goose (move ?fx ?fy ?tx ?ty))

(goosemove ?fx ?fy ?tx ?ty))

(<= (legal ?p noop)

(true (control ?q))

(distinct ?p ?q))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (cell ?fx ?fy empty))

(does ?p (move ?fx ?fy ?tx ?ty)))

(<= (next (cell ?tx ?ty ?p))

(does ?p (move ?fx ?fy ?tx ?ty)))

(<= (next (cell ?x ?y ?v))

(does ?p (move ?fx ?fy ?tx ?ty))

(true (cell ?x ?y ?v))

(or (distinct ?x ?fx) (distinct ?y ?fy))

(or (distinct ?x ?tx) (distinct ?y ?ty)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control fox))

(true (control goose)))

(<= (next (control goose))

(true (control fox)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal ?p 100)

(true (control ?q))

(distinct ?p ?q))

(<= (goal ?p 0)

(true (control ?p)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not (foxmove ?fx ?fy ?tx ?ty))

(not (goosemove ?fx ?fy ?tx ?ty)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Legal move helpers.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (foxmove ?fx ?fy ?tx ?ty)

(true (control fox))

(true (cell ?fx ?fy fox))

(true (cell ?tx ?ty empty))

(adjacent ?fx ?tx)

(adjacent ?fy ?ty))

(<= (goosemove ?fx ?fy ?tx ?ty)

(true (control goose))

(true (cell ?fx ?fy goose))

(true (cell ?tx ?ty empty))

(succ ?fx ?tx)

(adjacent ?fy ?ty))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Arithmetic.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

(succ 12 13)

(succ 13 14)

(succ 14 15)

(succ 15 16)

(succ 16 17)

(succ 17 18)

(succ 18 19)

(succ 19 20)

(succ 20 21)

(succ 21 22)

(succ 22 23)

(succ 23 24)

(succ 24 25)

(<= (adjacent ?x ?y)

(or (succ ?x ?y) (succ ?y ?x)))

40



A.6 SG{1,2,3}(normal form)

A.6 SG{1,2,3}(normal form)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role Left)

(role Right)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Left player begins. Arbitrarily chosen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control Left))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control Right))

(true (control Left)))

(<= (next (control Left))

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Noop moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal Left noop)

(not (true (control Left)))

(open))

(<= (legal Right noop)

(not (true (control Right)))

(open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Normal form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal Left 100)

(not (open))

(not (true (control Left))))

(<= (goal Left 0)

(not (open))

(true (control Left)))

(<= (goal Right 100)

(not (open))

(not (true (control Right))))

(<= (goal Right 0)

(not (open))

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not (open)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Start value of heap.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (value 21))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define open here, that is

;;; the game is not over if open is true.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (open)

(not (true (value 0))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?player (move ?x))

(true (control ?player))

(open)

(pmove ?x))

(<= (pmove ?x)

(true (value ?y))

(succ ?x ?y))

(<= (pmove ?x)

(true (value ?y))

(succ ?x ?a)

(succ ?a ?y))

(<= (pmove ?x)

(true (value ?y))

(succ ?x ?a)

(succ ?a ?b)

(succ ?b ?y))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (value ?x))

(does ?player (move ?x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define arithmetic.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(succ 0 1)

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

(succ 12 13)

(succ 13 14)

(succ 14 15)

(succ 15 16)

(succ 16 17)

(succ 17 18)

(succ 18 19)

(succ 19 20)

(succ 20 21)

41



A.7 SG{1,2,3}(misère form)

A.7 SG{1,2,3}(misère form)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role Left)

(role Right)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Left player begins. Arbitrarily chosen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control Left))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control Right))

(true (control Left)))

(<= (next (control Left))

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Noop moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal Left noop)

(not (true (control Left)))

(open))

(<= (legal Right noop)

(not (true (control Right)))

(open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Misere form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal Left 100)

(not (open))

(true (control Left)))

(<= (goal Left 0)

(not (open))

(not (true (control Left))))

(<= (goal Right 100)

(not (open))

(true (control Right)))

(<= (goal Right 0)

(not (open))

(not (true (control Right))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not (open)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Start value of heap.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (value 21))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define open here, that is

;;; the game is not over if open is true.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (open)

(not (true (value 0))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?player (move ?x))

(true (control ?player))

(open)

(pmove ?x))

(<= (pmove ?x)

(true (value ?y))

(succ ?x ?y))

(<= (pmove ?x)

(true (value ?y))

(succ ?x ?a)

(succ ?a ?y))

(<= (pmove ?x)

(true (value ?y))

(succ ?x ?a)

(succ ?a ?b)

(succ ?b ?y))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (value ?x))

(does ?player (move ?x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define arithmetic.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(succ 0 1)

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

(succ 12 13)

(succ 13 14)

(succ 14 15)

(succ 15 16)

(succ 16 17)

(succ 17 18)

(succ 18 19)

(succ 19 20)

(succ 20 21)

42



A.8 SG{1,2,5}

A.8 SG{1,2,5}

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role Left)

(role Right)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Left player begins. Arbitrarily chosen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control Left))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control Right))

(true (control Left)))

(<= (next (control Left))

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Noop moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal Left noop)

(not (true (control Left)))

open)

(<= (legal Right noop)

(not (true (control Right)))

open)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Normal form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal Left 100)

(not open)

(not (true (control Left))))

(<= (goal Left 0)

(not open)

(true (control Left)))

(<= (goal Right 100)

(not open)

(not (true (control Right))))

(<= (goal Right 0)

(not open)

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define initialised relations here.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (heap 1 10))

(init (heap 2 11))

(init (heap 3 12))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define open here, that is

;;; the game is not over if open is true.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (open) (not (and (true (heap 1 0))

(true (heap 2 0))

(true (heap 3 0)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?player (move ?idx ?v))

(pmove ?idx ?v)

(open)

(true (control ?player)))

;; Subtraction by 1

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?oldv))

;; Subtraction by 2

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?a)

(succ ?a ?oldv))

;; Subtraction by 5

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?oldv))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (heap ?idx ?v))

(does ?player (move ?idx ?v)))

;; Define arithmetic

(succ 0 1)

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

43



A.9 SG{1-5-7}

A.9 SG{1-5-7}

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role Left)

(role Right)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Left player begins. Arbitrarily chosen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control Left))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control Right))

(true (control Left)))

(<= (next (control Left))

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Noop moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal Left noop)

(not (true (control Left)))

open)

(<= (legal Right noop)

(not (true (control Right)))

open)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Normal form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal Left 100)

(not open)

(not (true (control Left))))

(<= (goal Left 0)

(not open)

(true (control Left)))

(<= (goal Right 100)

(not open)

(not (true (control Right))))

(<= (goal Right 0)

(not open)

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Misere form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;(<= (goal Left 100)

; (not open)

; (true (control Left)))

;

;(<= (goal Left 0)

; (not open)

; (not (true (control Left))))

;

;(<= (goal Right 100)

; (not open)

; (true (control Right)))

;

;(<= (goal Right 0)

; (not open)

; (not (true (control Right))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define initialised relations here.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (heap 1 10))

(init (heap 2 11))

(init (heap 3 12))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define open here, that is

;;; the game is not over if open is true.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (open) (not (and (true (heap 1 0)) (true (heap 2 0)) (true (heap 3 0)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?player (move ?idx ?v))

(pmove ?idx ?v)

(open)

(true (control ?player)))

;; Subtraction by 1

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?oldv))

;; Subtraction by 5

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?oldv))

;; Subtraction by 7

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?e)

(succ ?e ?f)

(succ ?f ?oldv))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (heap ?idx ?v))

(does ?player (move ?idx ?v)))

;; Define arithmetic

(succ 0 1)

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

44



A.10 SG{3-5-7}

A.10 SG{3-5-7}

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role Left)

(role Right)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Left player begins. Arbitrarily chosen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control Left))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternerating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control Right))

(true (control Left)))

(<= (next (control Left))

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Noop moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal Left noop)

(not (true (control Left)))

open)

(<= (legal Right noop)

(not (true (control Right)))

open)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Normal form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal Left 100)

(not open)

(not (true (control Left))))

(<= (goal Left 0)

(not open)

(true (control Left)))

(<= (goal Right 100)

(not open)

(not (true (control Right))))

(<= (goal Right 0)

(not open)

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Misere form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;(<= (goal Left 100)

; (not open)

; (true (control Left)))

;

;(<= (goal Left 0)

; (not open)

; (not (true (control Left))))

;

;(<= (goal Right 100)

; (not open)

; (true (control Right)))

;

;(<= (goal Right 0)

; (not open)

; (not (true (control Right))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define initialised relations here.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (heap 1 10))

(init (heap 2 11))

(init (heap 3 12))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define open here, that is

;;; the game is not over if open is true.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (open) (not (and (true (heap 1 0)) (true (heap 2 0)) (true (heap 3 0)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?player (heap ?idx ?v))

(pmove ?idx ?v)

(open)

(true (control ?player)))

;; Subtraction by 3

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?oldv))

;; Subtraction by 5

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?oldv))

;; Subtraction by 7

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?e)

(succ ?e ?f)

(succ ?f ?oldv))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (heap ?idx ?v))

(does ?player (move ?idx ?v)))

;; Define arithmetic

(succ 0 1)

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

45



A.11 SG{1,2}{1,5} single

A.11 SG{1,2}{1,5} single

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role Left)

(role Right)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Left player begins. Arbitrarily chosen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control Left))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control Right))

(true (control Left)))

(<= (next (control Left))

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Noop moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal Left noop)

(not (true (control Left)))

open)

(<= (legal Right noop)

(not (true (control Right)))

open)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Normal form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal Left 100)

(not open)

(not (true (control Left))))

(<= (goal Left 0)

(not open)

(true (control Left)))

(<= (goal Right 100)

(not open)

(not (true (control Right))))

(<= (goal Right 0)

(not open)

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Misere form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;(<= (goal Left 100)

; (not open)

; (true (control Left)))

;

;(<= (goal Left 0)

; (not open)

; (not (true (control Left))))

;

;(<= (goal Right 100)

; (not open)

; (true (control Right)))

;

;(<= (goal Right 0)

; (not open)

; (not (true (control Right))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define initialised relations here.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (heap1 7))

(init (heap2 11))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define open here, that is

;;; the game is not over if open is true.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (open) (not (and (true (heap1 0)) (true (heap2 0)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?player (move1 ?v))

(pmove1 ?v)

(open)

(true (control ?player)))

(<= (legal ?player (move2 ?v))

(pmove2 ?v)

(open)

(true (control ?player)))

;; Subtraction set of heap 1

;; Subtraction by 1

(<= (pmove1 ?v)

(true (heap1 ?oldv))

(succ ?v ?oldv))

;; Subtraction by 2

(<= (pmove1 ?v)

(true (heap1 ?oldv))

(succ ?v ?a)

(succ ?a ?oldv))

;; Subtraction set of heap 2

;; Subtraction by 1

(<= (pmove2 ?v)

(true (heap2 ?oldv))

(succ ?v ?oldv))

;; Subtraction by 5

(<= (pmove2 ?v)

(true (heap2 ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?oldv))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (heap1 ?v))

(does ?player (move1 ?v)))

(<= (next (heap2 ?v))

(does ?player (move2 ?v)))

;; Define arithmetic

(succ 0 1)

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

46



A.12 SG{1,2}{1,5}

A.12 SG{1,2}{1,5}

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role Left)

(role Right)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Left player begins. Arbitrarily chosen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control Left))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternerating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control Right))

(true (control Left)))

(<= (next (control Left))

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Noop moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal Left noop)

(not (true (control Left)))

open)

(<= (legal Right noop)

(not (true (control Right)))

open)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Normal form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal Left 100)

(not open)

(not (true (control Left))))

(<= (goal Left 0)

(not open)

(true (control Left)))

(<= (goal Right 100)

(not open)

(not (true (control Right))))

(<= (goal Right 0)

(not open)

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define initialised relations here.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (heap 1 7))

(init (heap 2 11))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define open here, that is

;;; the game is not over if open is true.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (open) (not (and (true (heap 1 0))

(true (heap 2 0)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?player (move ?idx ?v))

(pmove ?idx ?v)

(open)

(true (control ?player)))

;; Subtraction set of heap 1

;; Subtraction by 1

(<= (pmove 1 ?v)

(true (heap 1 ?oldv))

(succ ?v ?oldv))

;; Subtraction by 2

(<= (pmove 1 ?)

(true (heap 1 ?oldv))

(succ ?v ?a)

(succ ?a ?oldv))

;; Subtraction set of heap 2

;; Subtraction by 1

(<= (pmove 2 ?v)

(true (heap 2 ?oldv))

(succ ?v ?oldv))

;; Subtraction by 5

(<= (pmove 2 ?v)

(true (heap 2 ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?oldv))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (heap ?idx ?v))

(does ?player (move ?idx ?v)))

;; Define arithmetic

(succ 0 1)

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

47



A.13 SG{1,5,7} nonzero

A.13 SG{1,5,7} nonzero
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Two players

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(role Left)

(role Right)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Left player begins. Arbitrarily chosen.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (control Left))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Alternerating turns.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (control Right))

(true (control Left)))

(<= (next (control Left))

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Noop moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal Left noop)

(not (true (control Left)))

open)

(<= (legal Right noop)

(not (true (control Right)))

open)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Goal conditions

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Normal form

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (goal Left 100)

(not open)

(not (true (control Left))))

(<= (goal Left 0)

(not open)

(true (control Left)))

(<= (goal Right 100)

(not open)

(not (true (control Right))))

(<= (goal Right 0)

(not open)

(true (control Right)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Terminal condition. End of game.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= terminal

(not open))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define initialised relations here.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(init (heap 1 10))

(init (heap 2 11))

(init (heap 3 12))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define open here, that is

;;; the game is not over if open is true.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (open) (not (true (heap 1 2))

(true (heap 2 2))

(true (heap 3 2))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define legal moves.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (legal ?player (move ?idx ?v))

(pmove ?idx ?v)

(open)

(true (control ?player)))

;; Subtraction by 1

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?oldv))

;; Subtraction by 5

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?oldv))

;; Subtraction by 7

(<= (pmove ?idx ?v)

(true (heap ?idx ?oldv))

(succ ?v ?a)

(succ ?a ?b)

(succ ?b ?c)

(succ ?c ?d)

(succ ?d ?e)

(succ ?e ?f)

(succ ?f ?oldv))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Define state of game in the next

;;; turn.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(<= (next (heap ?idx ?v))

(does ?player (move ?idx ?v)))

;; Define arithmetic

(succ 0 1)

(succ 1 2)

(succ 2 3)

(succ 3 4)

(succ 4 5)

(succ 5 6)

(succ 6 7)

(succ 7 8)

(succ 8 9)

(succ 9 10)

(succ 10 11)

(succ 11 12)

48



B Game Description Language grammar

B Game Description Language grammar

This is the grammar used for parsing GDL code, written in ANTLR syntax.
The grammar is stripped of all implementation specific code.

header {

package spela.losa;

import spela.losa.util.Logger;

import spela.losa.grammar.*;

}

/** Grammar for the Game Description Language

*

* @author Erik Edin

*/

class GDLParser extends Parser;

options {

k=5;

}

gameDescription :

(WS)?

(

( role | init | leadsto | relation | legal )

(WS)?

)*;

role : LPAR "role" WS id RPAR ;

init : LPAR "init" WS relation (WS)? RPAR ;

relation : ( LPAR n1:NAME (WS argument)* RPAR | n2:NAME ) ;

argument : ( var:VARIABLE | relation ) ;

legal : LPAR "legal" WS id WS move (WS)? RPAR ;

move : LPAR n1:NAME (WS id)+ RPAR | n2:NAME | var:VARIABLE ;

trueSentence : LPAR "true" WS relation (WS)? RPAR ;

next : LPAR "next" WS relation (WS)? RPAR ;

49



B Game Description Language grammar

sentence :

(

trueSentence

|

relation

|

does

|

role

|

negation

|

or

|

and

|

goal

)

;

negation : LPAR "not" WS sentence (WS)? RPAR ;

or : LPAR "or" WS (sentence (WS)?)+ RPAR ;

and : LPAR "and" WS (sentence (WS)?)+ RPAR ;

leadsto :

(

LPAR "<=" WS legal (WS)? (sentence (WS)?)* RPAR

|

LPAR "<=" WS next (WS) (sentence (WS)?)* RPAR

|

LPAR "<=" WS goal WS (sentence (WS)?)* RPAR

|

LPAR "<=" WS relation (WS sentence)* RPAR

)

;

does : ( LPAR "does" WS id WS move (WS)? RPAR) ;

goal : LPAR "goal" WS id WS value:NAME (WS)? RPAR ;

id : ( n1:NAME | v1:VARIABLE ) ;

50



B Game Description Language grammar

class GDLLexer extends Lexer;

options {

k=6;

}

LPAR

:

’(’

;

RPAR

:

’)’

;

NAME

:

(~(’ ’|’\n’|’\t’|’\r’|’(’|’)’|’;’|’?’))+

;

VARIABLE

:

’?’ NAME

;

protected

COMMENT

:

’;’ (~(’\r’|’\n’))* (’\r’|’\n’)

;

WS

:

(’\n’ | ’\t’ | ’ ’ | ’\r’ | COMMENT)+

;

51



TRITA-CSC-E 2007:048 
ISRN-KTH/CSC/E--07/048--SE 

ISSN-1653-5715 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
www.kth.se 




