Lecture 3:
Decision Tree Learning

Homework: Concept Learner

S-boundary
G-boundary
Queries guaranteed to reduce the version space size
Homework: Concept Learner

Ideal training examples to teach the target concept

Outline

- Decision tree representation
- ID3 learning algorithm
- Entropy, information gain
- Overfitting
Decision Tree for PlayTennis

Outlook
 Sunny
 Overcast
 Rain

Humidity
 High
 Normal

Wind
 Strong
 Weak

Each internal node tests an attribute
Each branch corresponds to an attribute value node
Each leaf node assigns a classification
Decision Tree for PlayTennis

Outlook
- Sunny
- Overcast
- Rain

Humidity
- High
- Normal

Wind
- Strong
- Weak

PlayTennis
- No
- Yes

Decision Tree for Conjunction

Outlook
- Sunny
- Overcast
- Rain

Wind
- Strong
- Weak

Outlook=Sunny and Wind=Weak
- Yes
- No

Outlook=Sunny and Wind=Strong
- No

Outlook=Sunny and Wind=Weak
- Yes

Outlook=Overcast and Wind=Weak
- No

Outlook=Rain and Wind=Weak
- No
Decision Tree for Disjunction

Outlook=Sunny? Wind=Weak

Decision Tree for XOR

Outlook=Sunny XOR Wind=Weak
Decision Tree

- decision trees represent disjunctions of conjunctions

```
  Outlook
   Sunny
     Humidity
       High
         No
       Normal
         Yes
   Overcast
   Rain
     Wind
       Strong
         No
       Weak
         Yes
```

(Outlook=Sunny ? Humidity=Normal)
? (Outlook=Overcast)
? (Outlook=Rain ? Wind=Weak)

When to consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data
- Missing attribute values
- Examples:
 - Medical diagnosis
 - Credit risk analysis
 - Object classification for robot manipulator (Tan 1993)
Top-Down Induction of Decision Trees ID3

1. A ? the “best” decision attribute for next node
2. Assign A as decision attribute for node
3. For each value of A create new descendant
4. Sort training examples to leaf node according to the attribute value of the branch
5. If all training examples are perfectly classified (same value of target attribute) stop, else iterate over new leaf nodes.

Which Attribute is “best”?

[29+, 35-] \(A_1 = ? \)
True False
[21+, 5-] [8+, 30-]

[29+, 35-] \(A_2 = ? \)
True False
[18+, 33+] [11+, 2-]
Entropy

- S is a sample of training examples
- p_+ is the proportion of positive examples
- p_- is the proportion of negative examples
- Entropy measures the impurity of S
 \[
 \text{Entropy}(S) = -p_+ \log_2 p_+ - p_- \log_2 p_-
 \]

Entropy

- Entropy(S) = expected number of bits needed to encode class (+ or -) of randomly drawn members of S (under the optimal, shortest length-code)
- Why?
 - Information theory optimal length code assign $-\log_2 p$ bits to messages having probability p.
 - So the expected number of bits to encode (+ or -) of random member of S:
 \[
 -p_+ \log_2 p_+ - p_- \log_2 p_-
 \]
Information Gain

Gain(S,A): expected reduction in entropy due to sorting S on attribute A

Gain(S,A) = Entropy(S) - \(\sum_{v \in \text{values}(A)} \frac{|S_v|}{|S|} \cdot \text{Entropy}(S_v)\)

Entropy([29+,35-]) = \(-\frac{29}{64} \log_2 \frac{29}{64} - \frac{35}{64} \log_2 \frac{35}{64}\) = 0.99

\[\begin{array}{c}
[29+,35-] \\
A_1 = ?
\end{array}\]

\[\begin{array}{ll}
\text{True} & [21+, 5-] \\
\text{False} & [8+, 30-]
\end{array}\]

\[\begin{array}{c}
[29+,35-] \\
A_2 = ?
\end{array}\]

\[\begin{array}{ll}
\text{True} & [29+,35-] \\
\text{False} & [18+, 33-] \\
& [11+, 2-]
\end{array}\]

Information Gain

Entropy([21+,5-]) = 0.71
Entropy([8+,30-]) = 0.74
Gain(S,A_1) = \frac{26}{64} \cdot \text{Entropy}([21+,5-]) + \frac{38}{64} \cdot \text{Entropy}([8+,30-]) = 0.27

Entropy([18+,33-]) = 0.94
Entropy([8+,30-]) = 0.62
Gain(S,A_2) = \frac{51}{64} \cdot \text{Entropy}([18+,33-]) + \frac{13}{64} \cdot \text{Entropy}([11+,2-]) = 0.12

\[\begin{array}{c}
[29+,35-] \\
A_1 = ?
\end{array}\]

\[\begin{array}{ll}
\text{True} & [21+, 5-] \\
\text{False} & [8+, 30-]
\end{array}\]

\[\begin{array}{c}
[29+,35-] \\
A_2 = ?
\end{array}\]

\[\begin{array}{ll}
\text{True} & [29+,35-] \\
\text{False} & [18+, 33-] \\
& [11+, 2-]
\end{array}\]
Training Examples

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play Tennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cold</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

Selecting the Next Attribute

Humidity
- \(S = [9+, 5-] \)
- \(E = 0.940 \)
- \(S = [9+, 5-] \)
- \(E = 0.985 \)

- \(\text{High} \)
 - \([3+, 4+] \)
 - \(E = 0.985 \)

- \(\text{Normal} \)
 - \([6+, 1+] \)
 - \(E = 0.592 \)

Gain\((S, \text{Humidity})\) = \(0.940 \times (7/14) \times 0.985 - (7/14) \times 0.592 = 0.151\)

Wind
- \(S = [9+, 5-] \)
- \(E = 0.940 \)
- \(S = [9+, 5-] \)
- \(E = 0.811 \)

- \(\text{Weak} \)
 - \([6+, 2+] \)
 - \(E = 0.811 \)

- \(\text{Strong} \)
 - \([3+, 3+] \)
 - \(E = 1.0 \)

Gain\((S, \text{Wind})\) = \(0.940 \times (8/14) \times 0.811 - (6/14) \times 1.0 = 0.048\)
Selecting the Next Attribute

\[
S = [9+, 5-] \\
E = 0.940 \\
\]

\[
\text{Outlook} \\
\]

\[
\begin{align*}
\text{Sunny} & \quad [2+, 3-] \\
E &= 0.971 \\
\text{Overcast} & \quad [4+, 0] \\
E &= 0.0 \\
\text{Rain} & \quad [3+, 2-] \\
E &= 0.971 \\
\end{align*}
\]

Gain(S, Outlook) = 0.940 - (5/14)*0.971 - (4/14)*0.0 - (5/14)*0.0971 = 0.247

ID3 Algorithm

\[
[D1, D2, ..., D14] \\
[9+, 5-] \\
\]

\[
\text{Outlook} \\
\]

\[
\begin{align*}
\text{Sunny} & \quad [2+, 3-] \\
\text{Overcast} & \quad [4+, 0] \\
\text{Rain} & \quad [3+, 2-] \\
\end{align*}
\]

\[
S_{\text{sunny}} = [D1, D2, D8, D9, D11], [D3, D7, D12, D13], [D4, D5, D6, D10, D14] \\
[2+, 3-], [4+, 0], [3+, 2-] \\
\]

Gain(S_{\text{sunny}}, \text{Humidity}) = 0.970 - (3/5)*0.0 - 2/5(0.0) = 0.970 \\
Gain(S_{\text{sunny}}, \text{Temp.}) = 0.970 - (2/5)*0.0 - 2/5(1.0) - (1/5)*0.0 = 0.570 \\
Gain(S_{\text{sunny}}, \text{Wind}) = 0.970 - (2/5)*1.0 - 3/5(0.918) = 0.019
ID3 Algorithm

```
Outlook
   Sunny
   Overcast
   Rain

Humidity
   High
   No
   Normal
   Yes

Wind
   Strong
   No
   Weak
   Yes

[D3,D7,D12,D13] [D8,D9,D11] [D6,D14] [D4,D5,D10]
```

Hypothesis Space Search ID3

```
- - + A1
- - + - - + A2
- + - - + - A3
- + + + + - A4
```
Hypothesis Space Search ID3

- Hypothesis space is complete!
 - Target function surely in there...
- Outputs a single hypothesis
- No backtracking on selected attributes (greedy search)
 - Local minimal (suboptimal splits)
- Statistically-based search choices
 - Robust to noisy data
- Inductive bias (search bias)
 - Prefer shorter trees over longer ones
 - Place high information gain attributes close to the root

Inductive Bias in ID3

- \(H \) is the power set of instances \(X \)
 - Unbiased ?
- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a preference for some hypotheses, rather than a restriction of the hypothesis space \(H \)
- Occam’s razor: prefer the shortest (simplest) hypothesis that fits the data
Occam’s Razor

Why prefer short hypotheses?

Argument in favor:
- Fewer short hypotheses than long hypotheses
- A short hypothesis that fits the data is unlikely to be a coincidence
- A long hypothesis that fits the data might be a coincidence

Argument opposed:
- There are many ways to define small sets of hypotheses
- E.g. All trees with a prime number of nodes that use attributes beginning with “Z”
- What is so special about small sets based on size of hypothesis

Occam’s Razor

Definition A:
- green
- blue

Hypothesis A:
- Objects do not instantaneously change their color.

Definition B:
- grue
- bleen

Hypothesis B: 1.1.2000 0:00

On 1.1.2000 objects that were grue turned instantaneously bleen and objects that were bleen turned instantaneously grue.
Consider error of hypothesis h over

- Training data: $\text{error}_{\text{train}}(h)$
- Entire distribution D of data: $\text{error}_{\text{D}}(h)$

Hypothesis h? H overfits training data if there is an alternative hypothesis h'? H such that

\[
\text{error}_{\text{train}}(h) < \text{error}_{\text{train}}(h')
\]

and

\[
\text{error}_{\text{D}}(h) > \text{error}_{\text{D}}(h')
\]
Avoid Overfitting

How can we avoid overfitting?
- Stop growing when data split not statistically significant
- Grow full tree then post-prune
- Minimum description length (MDL):
 Minimize:
 \[\text{size(tree)} + \text{size(misclassifications(tree))} \]

Reduced-Error Pruning

Split data into training and validation set
Do until further pruning is harmful:
1. Evaluate impact on validation set of pruning each possible node (plus those below it)
2. Greedily remove the one that most improves the validation set accuracy

Produces smallest version of most accurate subtree
Effect of Reduced-Error Pruning

Rule-Post Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of each other
3. Sort final rules into a desired sequence to use

Method used in C4.5
Converting a Tree to Rules

R1: If (Outlook=Sunny) ? (Humidity=High) Then PlayTennis=No
R2: If (Outlook=Sunny) ? (Humidity=Normal) Then PlayTennis=Yes
R3: If (Outlook=Overcast) Then PlayTennis=Yes
R4: If (Outlook=Rain) ? (Wind=Strong) Then PlayTennis=No
R5: If (Outlook=Rain) ? (Wind=Weak) Then PlayTennis=Yes

Continuous Valued Attributes

Create a discrete attribute to test continuous
- Temperature = 24.5°C
- (Temperature > 20.0°C) = {true, false}
Where to set the threshold?

<table>
<thead>
<tr>
<th>Temperature</th>
<th>15°C</th>
<th>18°C</th>
<th>19°C</th>
<th>22°C</th>
<th>24°C</th>
<th>27°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlayTennis</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

(see paper by [Fayyad, Irani 1993])
Attributes with many Values

- Problem: if an attribute has many values, maximizing InformationGain will select it.
- E.g.: Imagine using Date=12.7.1996 as attribute perfectly splits the data into subsets of size 1
Use GainRatio instead of information gain as criteria:
GainRatio(S,A) = Gain(S,A) / SplitInformation(S,A)
SplitInformation(S,A) = -\sum_{i=1..c} |S_i|/|S| \log_2 |S_i|/|S|
Where S_i is the subset for which attribute A has the value v_i

Attributes with Cost

Consider:
- Medical diagnosis: blood test costs 1000 SEK
- Robotics: width_from_one_feet has cost 23 secs.
How to learn a consistent tree with low expected cost?
Replace Gain by:
Gain^2(S,A)/Cost(A) [Tan, Schimmer 1990]
2^{Gain(S,A)-1/(Cost(A)+1)^w} w [0,1] [Nunez 1988]
Unknown Attribute Values

What is some examples missing values of A? Use training example anyway sort through tree
- If node n tests A, assign most common value of A among other examples sorted to node n.
- Assign most common value of A among other examples with same target value
- Assign probability p_i to each possible value v_i of A
 - Assign fraction p_i of example to each descendant in tree

Classify new examples in the same fashion

Cross-Validation

- Estimate the accuracy of a hypothesis induced by a supervised learning algorithm
- Predict the accuracy of a hypothesis over future unseen instances
- Select the optimal hypothesis from a given set of alternative hypotheses
 - Pruning decision trees
 - Model selection
 - Feature selection
- Combining multiple classifiers (boosting)
Holdout Method

* Partition data set $D = \{(v_1, y_1), \ldots, (v_n, y_n)\}$ into training D_t and validation set $D_h = D \setminus D_t$.

$$\text{Training } D_t \quad \text{Validation } D \setminus D_t$$

- $\text{acc}_h = \frac{1}{h} \sum_{i=1}^{h} I(D_h, v_i) \cdot y_i$ for $i \neq j$.

- $I(D_t, v_i)$: output of hypothesis induced by learner I trained on data D_t for instance v_i.

- $(i, j) = 1$ if $i = j$ and 0 otherwise.

Problems:
- Makes insufficient use of data
- Training and validation set are correlated

Cross-Validation

* k-fold cross-validation splits the data set D into k mutually exclusive subsets D_1, D_2, \ldots, D_k.

$$D_1 \quad D_2 \quad D_3 \quad D_4$$

- Train and test the learning algorithm k times, each time it is trained on $D \setminus D_i$ and tested on D_i.

$$D_1 \quad D_2 \quad D_3 \quad D_4 \quad D_1 \quad D_2 \quad D_3 \quad D_4$$

- $\text{acc}_{cv} = \frac{1}{n} \sum_{i=1}^{n} I(D \setminus D_i, v_i) \cdot y_i$ for $i \neq j$.

- $I(D \setminus D_i, v_i)$: output of hypothesis induced by learner I trained on data $D \setminus D_i$ for instance v_i.
Cross-Validation

- Uses all the data for training and testing
- Complete k-fold cross-validation splits the dataset of size m in all \((m \over m/k)\) possible ways (choosing \(m/k\) instances out of m)
- Leave n-out cross-validation sets n instances aside for testing and uses the remaining ones for training (leave one-out is equivalent to n-fold cross-validation)
- In stratified cross-validation, the folds are stratified so that they contain approximately the same proportion of labels as the original data set

Bootstrap

- Samples n instances uniformly from the data set with replacement
- Probability that any given instance is not chosen after n samples is \((1-1/n)^n \approx e^{-1} \approx 0.632\)
- The bootstrap sample is used for training the remaining instances are used for testing
- \[\text{acc}_{\text{boot}} = 1/b \sum_{i=1}^{b} (0.632 \cdot \text{acc}_i + 0.368 \cdot \text{acc}_s)\]
 where \(\text{acc}_i\) is the accuracy on the test data of the i-th bootstrap sample, \(\text{acc}_s\) is the accuracy estimate on the training set and b the number of bootstrap samples
Wrapper Model

Evaluate the accuracy of the inducer for a given subset of features by means of n-fold cross-validation.

- The training data is split into n folds, and the induction algorithm is run n times. The accuracy results are averaged to produce the estimated accuracy.
- **Forward elimination:**
 - Starts with the empty set of features and greedily adds the feature that improves the estimated accuracy at most.
- **Backward elimination:**
 - Starts with the set of all features and greedily removes features and greedily removes the worst feature.
Bagging

For each trial $t=1,2,...,T$ create a bootstrap sample of size N.
Generate a classifier C^t from the bootstrap sample.
The final classifier C^* takes class that receives the majority votes among the C^t.

Bagging requires "instable" classifiers like for example decision trees or neural networks.

"The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy." (Breiman 1996)
MLC++

- Machine Learning library in C++ developed by Ron Kohavi et al
- Includes decision trees (ID3), decision graphs, nearest-neighbors, probabilities (Naive-Bayes), perceptron
- Provides interfaces for external (not part of MLC++) inducers such as C4.5, OC1, PEBLS, CN2
- Includes a set of tools (wrappers) for producing learning curves, perform accuracy estimation, generate statistics, bagging, feature subset selection

MLC++

- MLC++ comes in two versions
 - MLC++ utilities 2.0: compiled code for SUN takes options from the command line or environment variables
 - MLC++ source code: you build the libraries and use the classes and methods in your own program
- Documentation:
 - Manual for the MLC++ Utilities: decent
 - Tutorial for MLC++ libraries: minimal, you find some documentation in the source code itself
MLC++

Preliminaries:
- Use gcc 2.7.2.3 not gcc 2.95
 - module add gcc/2.7.2.3
- MLC++ install directories
 - /afs/nada.kth.se/home/cvap/hoffmann/Teaching/ML/MLC
 - setenv MLCDIR /afs/nada.kth.se/home/cvap/hoffmann/Teaching/ML/MLC
 - source $MLCDIR/setup.SUN.GNU
 - setenv PATH $PATH:$MLCDIR/external/gnu:$MLCDIR/bin
- Test installation
 - cp $MLCDIR/tutorial/dt1.c $MLCDIR/tutorial/Makefile .
 - make dt1
 - ./dt1

Data Files
- One dataset has three associated files:
 - <dataset>.names : describes how to parse the data
 - <dataset>.data : contains the training instances
 - <dataset>.test : contains additional instances for estimating the accuracy
- Monk1.names (| starts a comment)
 - no, yes
 - Head shape : round, square, octagon
 - Body shape : round, square, octagon
 - Holding : sword, ballon, flag
 - Jacket color: red, yellow, green, blue
 - Has tie: yes, no
- Monk1.data
 - round, round, yes, sword, green, yes, yes
 - round, round, yes, sword, green, no, yes
Example ID3

```cpp
#include <basics.h> // Must be included first in any program using MLC++
#include <ID3Inducer.h> // Include ID3Inducer class declarations

main()
{
    ID3Inducer inducer("my_first_ID3"); // "inducer" is an object of ID3Inducer
    inducer.set_unknown_edges(FALSE); // Avoid edges for "unknown" attributes.
    inducer.read_data("monk"); // Read data files tutorial.names and tutorial.data
    inducer.train(); // Produce categorizer
    inducer.display_struct(); // Display structure of categorizer

    return 0; // Return success to shell
}
```

Example Test Inducer

```cpp
#include <ID3Inducer.h>
#include <PerfEstDispatch.h>
ID3Inducer inducer("my_first_ID3");
inducer.set_unknown_edges(FALSE);
inducer.read_data("monk");
inducer.train();
InstanceList train("monk1");
InstanceList test(train.get_schema(),"monk1",".names",".test");
CatTestResult result(inducer.get_categorizer(), train, test);
result.display();

Classifying (% done): 10% 20% 30% 40% 50% 60% 70% 80%
Number of training instances: 124
Number of test instances: 432. Unseen: 308, seen 124.
Number correct: 350. Number incorrect: 82
Generalization error: 26.62%. Memorization error: 0.00%
Error: 18.98% +- 1.89% [15.56% - 22.95%]
Average Normalized Mean Squared Error: 18.98%
Average Normalized Mean Absolute Error: 18.98%
```
Example Bootstrap Estimation

```c
#include <Bootstrap.h>
#include <ID3Inducer.h>
#include <PerfEstDispatch.h>

ID3Inducer inducer("my_first_ID3");
InstanceList train("monk1");
Bootstrap bootstrap(20);
bootstrap.init_rand_num_gen(0);
bootstrap.estimate_performance(inducer, train);
bootstrap.display();

Bootstrapping 20 times: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
13.30% +- 1.20% (2.81% - 22.05%)
```

Example Learning Curve

```c
#include <LearnCurve.h>
#include <ID3Inducer.h>
ID3Inducer inducer("my_first_ID3");
LearnCurve learncurve;
learncurve.set_sizes_and_trials (7, 20, 1, 120, train);
learncurve.init_rand_num_gen(0);
learncurve.learn_curve(inducer, train);

Train Size: 1; training 20 times................. Mean Error: 50.41% +- 0.00%
Train Size: 20; training 20 times............... Mean Error: 35.82% +- 1.33%
Train Size: 40; training 20 times............... Mean Error: 27.80% +- 1.68%
Train Size: 60; training 20 times............... Mean Error: 26.25% +- 1.71%
Train Size: 80; training 20 times............... Mean Error: 25.34% +- 1.76%
Train Size: 100; training 20 times.............. Mean Error: 19.79% +- 2.24%
Train Size: 120; training 20 times.............. Mean Error: 21.25% +- 4.89%
```
Example Bagging

```
ID3Inducer inducer("my_first_id3");
BaggingInd baggind("Bagging");
CatTestResult resultid3(inducer.get_categorizer(), train, "monk1",
".names", ".test");
Mcout << resultid3 << endl;
baggind.set_main_inducer(&inducer);
baggind.read_data("monk1");
baggind.train();
CatTestResult resultbagg(baggind.get_categorizer(), train,
"monk1",".names",".test");
Mcout << resultbagg << endl;
```

Number of test instances: 432. Unseen: 308, seen 124.
Generalization error: 26.62%. Memorization error: 0.00%
Error: 18.98% +- 1.89% [15.56% - 22.95%]
Generalization error: 14.29%. Memorization error: 0.00%
Error: 10.19% +- 1.46% [7.67% - 13.40%]

Homework

- Read chapter 3 on decision tree learning
- Read at least one out the following three articles
 - "A study of cross-validation and bootstrap for accuracy estimation and model selection" [Kohavi 1995]
 - "Irrelevant features and the subset selection problem" [John, Kohavi, Pfleger]
 - "Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning" [Fayyad, Irani 1993]