2001-05-16, ALa

 

2D1434 Neuronnäts- och Biomodellering

Läsanvisningar för Johnston D. and Wu S. M.-S.: Fundamentals of Cellular Neurophysiology, The MIT Press, ISBN 0-262-10053-3.

Anvisningar: 1 = detaljkunskap; 2 = kunskap, 3 = orienterande. Siffra angiven för överordnat kapitel avser endast den inledande delen av detta kapitel, ej separat angivna underavsnitt.

 

1

Introduction

2

2

Ion Movement in Excitable Cells

 

2.1

Introduction

2

2.2

Physical laws that dictate ion movement

2

2.2.1

Fick’s law for diffusion

1

2.2.2

Ohm’s law for drift

1

2.2.3

The Einstein relation between diffusion and mobility

1

2.2.4

Space-charge neutrality, s 11,12

1

2.2.4

Space-charge neutrality , s 13

2

2.3

The Nernst-Planck equation (NPE)

1

2.4

The Nernst equation

1

2.5

Ion distribution and gradient maintenance

2

2.5.1

Active transport of ions

2

2.5.2

Passive distribution of ions and Donnan equilibrium

1

2.6

Effects of CI- and K+ on membrane voltage

2

2.7

Movement of ions across biological membranes

2

2.7.1

Membrane permeability

2

2.7.2

The Goldman-Hodgkin-Katz (GHK) model

1

2.7.3

Applications of GHK equations

2

2.7.3.1

Resting potential

1

2.7.3.2

Action potential

1

2.7.3.3

Effects of electrogenic pumps on membrane potential

2

3

Electrical Properties of the Excitable Membrane

 

3.1

Equivalent circuit representation

1

3.2

Membrane conductance

2

3.2.1

Linear membrane

2

3.2.2

Nonlinear membrane

2

3.3

Ionic conductances

2

3.4

The parallel conductance model

1

3.5

Current-voltage relations

2

4

Functional Properties of Dendrites[1]

 

4.1

Introduciton

3

4.2

Significance of electrotonic properties of neurons

2

4.3

Isopotential cell (sphere)

1

4.4

Nonisopotential cell (cylinder)

1

4.4.1

Units and definitions

1

4.4.2

Solutions of cable equations

2

4.4.2.1

Infinite cable, current step

2

4.4.2.2

Finite cable, current step

2

4.5

Rall model of neurons

 

4.5.1

Derivation of the model

2

4.5.1.1

Equivalent (semi-infinite) cylinder

1

4.5.1.2

Eqivalent (finite) cylinder

2

4.5.1.3

Finite cylinder with lumped soma

2

4.5.2

Experimental determination of l, r, and  tm

2

4.5.3

Application to synaptic inputs

1

4.6

Two-port network analysis of electrotonic structure

2

5

Nonlinear Properties of Excitable Membrane

 

5.1

Introduction

 

5.2

Membrane rectification

 

5.3

Models for membrane rectification

 

5.3.1

Constant field (GHK) model

2

5.3.2

Energy- barrier model (Eyring rate theory)

2

5.3.3

The gate model (Hodgkin and Huxley’s model)

1

6

Hodgkin and Huxley’s Analysis of the Squid Giant Axon

 

6.1

Introduction

 

6.2

Voltage-clamp experiments of the squid axon

2

6.3

Hodgkin and Huxley’s model

1

6.4

Nonpropagating and propagating action potentials

2

6.4.1

Hodgkin-Huxley equations for non-propagating and propagating action potentials

2

6.4.2

Variations in voltage and current for non-propagating and propagating action potentials

2

7

Functional Diversity of Voltage-Gated Ion Conductances

3

8

Molecular Structure and Unitary Currents of Ion Channels

 

8.1

Introduction

3

8.2

Molecular structure of ion channels

3

8.3

Patch-clamp records of single-channel currents

2

9

Stochastic Analysis of Single-Channel Function

 

9.1

Introduction

3

9.3

Statistical analysis of channel gating

1

9.4

Probability density function of channel gating

1

10

Formulation of Stochastic Channel Mechanisms

3

11

Synaptic Transmission I: Presynaptic Mechanisms

 

11.1

Electrical transmission

1

11.2

Chemical transmission

2

11.3

Experiments at the neuromuscular junction

2

11.4

Statistical treatment of the quantum hypothesis

2

11.5

Use-dependent synaptic plasticities

1

11.6

Synaptic transmission between central neurons

2

12

Synaptic Transmission II: Ca2+ and Transmitter Release

 

12.1

Introduction

3

12.2

Formulation of the Ca2+ hypothesis

3

12.3

Cooperative action of Ca2+ ions on transmitter release

2

12.4

Biophysical analysis of Ca2+ and transmitter release

2

12.4.5

A model for transmitter release at the squid synapse

1

12.5

Ca2+ and synaptic plasticity

2

12.6

Molecular mechanisms of release

3

13

Synaptic Transmission III: Postsynaptic Mechanisms

 

13.1

Introduction

3

13.2

General scheme for ligand-gated channels

2

13.3

Synaptic conductances and reversal potentials

 

13.3.1

Definitions of excitatory and inhibitory responses

1

13.3.2

Voltage-clamp anslysis of synaptic parameters (I-V curves)

2

13.3.3

Conductance and reversal potentials for nonisopotential synapti inputs

3

13.3.3.1

Reversal potentials and conductance ratios: General

1

13.4

Synaptic kinetics

1

13.5

Excitatory amino acid receptors

2

13.6

Functional properties of synapses

1

13.7

Slow synaptic responses: Conductance-decrease PSP:s

2

13.8

Diversity of neurotransmitters in the central nervous system

3

13.9

Electrical transmission

2

13.10

Compartemental models (ersätts av Genesis-kapitel)

3

13.11

Dendritic spines adn their effects on synaptic inputs

2

15

Cellular Neurophysiology of Learning and Memory

 

15.1

Introduction

3

15.1.1

Spine shape changes as a substrate for synaptic plasticity

3

15.1.1.1

Examples for spine shape changes and synaptic plasticity

3

15.1.2

Summary of the possible effects of dendritic spines

2

15.2

Long-term synaptic plasticity

1

15.3

Associative and non-associative forms of learning

1

15.4

Role of hippocampus in learning and memory

2

15.5

Computational models of learning and memory

2

 



[1] Alternativt läses motsvarande i Bower & Beeman: Genesis