Instance-Based Learning

- no explicit description of the target function
- generalization postponed until new instance has to be classified
- "lazy learning"
- local approximation of the target function
- High cost: training vs. classification!!!
- Case-base reasoning: more complex, symbolic representations for instances

Key idea: just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:
- Given query instance x_q, first locate nearest training example x_n, then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:
- Given x_q, take vote among its k nearest nbrs (if discrete-valued target function)
- take mean of f values of k nearest nbrs (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} f(x_i)}{k}$$
Nearest neighbor

- Instances map to points in \(n \)-dimensional space \(\mathbb{R}^n \)
- Nearest neighbors defined by standard Euclidean distance given their feature vectors

\[
d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}
\]

When To Consider Nearest Neighbor

- Less than 20 attributes per instance
- Lots of training data

Advantages:
- Training is very fast
- Learn complex target functions
- Don’t lose information

Disadvantages:
- Slow at query time
- Easily fooled by irrelevant attributes

Voronoi Diagram

3-Nearest Neighbors

query point \(q \)

nearest neighbor \(q \)
Behavior in the Limit

Consider \(p(x) \) defines probability that instance \(x \) will be labeled 1 (positive) versus 0 (negative).

Nearest neighbor:
- As number of training examples \(\to \infty \), approaches Gibbs Algorithm

 Gibbs: with probability \(p(x) \) predict 1, else 0

\(k \)-Nearest neighbor:
- As number of training examples \(\to \infty \) and \(k \) gets large, approaches Bayes optimal

 Bayes optimal: if \(p(x) > .5 \) then predict 1, else 0

Note Gibbs has at most twice the expected error of Bayes optimal
Nearest Neighbors (continuous)

Locally Weighted Regression (terminology)

- Regression means approximating a real-valued target function
- Residual is the error \(\hat{f}(x) - f(x) \) in approximating the target function
- Kernel function is the function of distance that is used to determine the weight of each training example
- In other words: the kernel function is the function \(K \) such that \(w_i = K(d(x_i, x_q)) \)

Distance-Weighted kNN

Might want weight nearer neighbors more heavily...

\[
\hat{f}(x_q) = \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}
\]

where

\[
w_i \equiv \frac{1}{d(x_q, x_i)^2}
\]

(or \(w_i = K(d(x_i, x_q)) \) in general and \(d(x_q, x_i) \) is distance between \(x_q \) and \(x_i \))

Note now it makes sense to use all training examples instead of just \(k \)

→ Shepard’s method
Distance Weighted k-NN

Give more weight to neighbors closer to the query point

\[f^*(x_q) = \sum_{i=1}^{k} w_i f(x_i) / \sum_{i=1}^{k} w_i \]

where \(w_i = K(d(x_q, x_i)) \) and \(d(x_q, x_i) \) is the distance between \(x_q \) and \(x_i \).

Instead of only k-nearest neighbors, use all training examples (Shepard’s method)

Distance Weighted Average

- Weighting the data:
 \[f^*(x_q) = \frac{\sum_i f(x_i)K(d(x_i, x_q))}{\sum_i K(d(x_i, x_q))} \]
- Relevance of a data point \((x_i, f(x_i))\) is measured by calculating the distance \(d(x_i, x_q)\) between the query \(x_q \) and the input vector \(x_i \).
- Weighting the error criterion:
 \[E(x_q) = \sum_i (f^*(x_q) - f(x_i))^2 K(d(x_i, x_q)) \]

the best estimate \(f^*(x_q) \) will minimize the cost \(E(x_q) \), therefore

\[\frac{\partial E(x_q)}{\partial f^*(x_q)} = 0 \]

Kernel Functions

Distance Weighted NN

\[K(d(x_q, x_i)) = \frac{1}{d(x_q, x_i)^2} \]
Distance Weighted NN

\[K(d(x_i,x_j)) = \frac{1}{(d_0 + d(x_i,x_j))^2} \]

Example: Mexican Hat

\[f(x_1,x_2) = \sin(x_1)\sin(x_2)/x_1x_2 \]

Approximation

Residual
Locally Weighted Linear Regression

- Local linear function
 \[f^*(x) = w_0 + \sum_n w_n x_n \]
- Error criterion
 \[E = \sum_i (w_0 + \sum_n w_n x_n - f(x_i))^2 K(d(x_i, x_q)) \]
- Gradient descent
 \[\Delta w_n = \sum_i (f^*(x_q) - f(x_i)) x_n K(d(x_i, x_q)) \]
- Least square solution
 \[w = (KK^T)^{-1}Kf(X) \]

with \(K\) being the matrix of row vectors, \(K(d(x_i, x_q))\) is a vector whose \(i\)-th element is \(f(x_i)\)

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: nearest nbr is easily mislead when high-dimensional \(X\)

One approach:
- Stretch \(j\)th axis by weight \(z_j\), where \(z_1, \ldots, z_n\) chosen to minimize prediction error
- Use cross-validation to automatically choose weights \(z_1, \ldots, z_n\)
- Note setting \(z_j\) to zero eliminates this dimension altogether (feature subset selection)

Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network - similar to back-propagation neural network but activation function is Gaussian rather than sigmoid
- Closely related to distance-weighted regression, but “eager” instead of “lazy”

where \(a_i(x)\) are the attributes describing instance \(x\), and

\[f(x) = w_0 + \sum_{u=1}^{k} w_u K_u(d(x_u, x)) \]

One common choice for \(K_u(d(x_u, x))\) is

\[K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma^2}d^2(x_u, x)} \]
Radial Basis Function Networks

Training Radial Basis Function Networks

Q1: What center \(x_u \) to use for each kernel function \(K_u(d(x_u,x)) \)
- Scatter uniformly throughout instance space
- Use distribution of training instances (clustering)

Q2: How to train weights (assume here Gaussian \(K_u \))
- First choose mean and variance for each \(K_u \)
 - e.g., use EM
- Then hold \(K_u \) fixed, and train linear output layer
 - Efficient methods to fit linear function

Lazy and Eager Learning

Lazy: wait for query before generalizing
- \(k \)-NEAREST NEIGHBOR, Case based reasoning

Eager: generalize before seeing query
- Radial basis function networks, ID3, Backpropagation, Naive-Bayes, ...

Does it matter?
- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same \(H \), lazy can represent more complex fn's (e.g., consider \(H = \) linear functions)

Radial Basis Function Networks

\[
f(x) = w_0 + \sum_{i=1}^{k} w_i K_i(d(x_i,x))
\]

Lazy and Eager Learning