2D1426 Robotics and Autonomous Systems

Project Report

Group 5: “Ad Hoc".

: DWSOR O{‘J‘*’ ULTIN

el T

Frontal view of the vicious “Ad Hoc” robot

Team members:

Heijkenskjold, Hannes <d96- hhe@ada. kt h. se>
Kalén, Martin <d96- nka@ada. kt h. se>
Malmesjo, Stefan <d96- sma@ada. kt h. se>
Hoc, Ad

Abstract

Thisisareport of the project for the course 2D1426 Robotics and Autonomous Systems. It describes
the ideas and the design of the Ad Hoc robot. It covers the main design goals, implementation and
results.

The goal of the robot was to play table hockey, and above al to be able to score agoal. Thiswas
actually accomplished during the qualification round for a table hockey tournament. However, the
robot never managed to score during any of the actual games. It was built of Lego bricks, and
controlled by amicro controller.

Table of Contents

THETASK @ NANG ..o ettt sa e bt e st et e etesteneete st nes 1
(1 T o OSSPSR 1
SensiNg and SENSOTY PrOCESSINT ...vuveieererrereeersesseseesesseseesessessessesessessesessessessesesseseesessessensssessessesensens 2
L OSSOSO 2
REFIEX JELECLOIS.......eivieeeieiieie ettt ettt s e beste s e e st st e s et e be b eseesessaneesestanean 2
IMIICIO SIWITCRIES ... ettt ettt ene e s be e enenseneen 3
[Ioleeqqlo 1Ko g IF=TaTo aT= Y/ Lo o] o HOU TS 3
=T o0 =i o OSSR ROSRRP 3
INtegration Of thE ADOVE ..o e et 4
SOftWare IMPIEMENLELIONeiveiiiie ettt se e b b ebe s se st e saenaeseetentenes 5
BENAVIOTS ...ttt et bbbt E R Rt b bR e e Re b e e e benrens 5
(21507 Y Ko g eto 1 =1 o o - 1o o BTSSR 5
Programming environment, computer hardware, and €leCtroniCs...........ccvverevviierirserene e esesenees 6
Programming ENVIFONMENT..........ceeiiueiieererieeee ettt st s st sbe b se e sseseneesessesnen 6
COMPULES NAIOWEI.........eeeeeiieteiei ittt sttt bbb bt b e st e et e st e bbb b st ebenbe e enesbenneneas 6
1= ot o5 6

L B0 1= = (TS 6
REFIEX HELECLONS....eueeeeeii ettt st st e s e e s tesreese et etesaeeseeneesansreenneneeseean 6
Yt TS o 1= TS 6
IMIOLOE WITTIIQ ..ttt et etttk h bkt b e se e bbb e b et eb e se e b bt se e b e neeneebenneneas 6

S oSO 7

[S (o 1= RSSO 7
2700 1 oo L= SRS 7

L S-S O 7
(00 o Tox 111 Lo 13RS 7
PN o= aTo D Rl i] I TSP 8
APPENIX 2 — REFEIENCES ...ttt et b et b e e b sre 9
APPENdiX 3 — CIirCUIL DIBGIAIMSc.eiviieieiiriesieisieie st sttt sttt st se e ebe s e s seseenensenes 10
K04 1= 1 0T o TSRS 10
APPENIX 4 — SOUMCE COUEveeveieieieeesieie sttt sttt sttt be st e e e e sbense e esenseaee 11
X0 | 1o o3 oSSR 11
275 7= LY/ o) o o SOOI 16
275 7= LY/ o) o oSO SSRRRSRTI 18
BUMPIID.N. ottt 24
BUMIPIID.C. e st sttt et e nrens 25

L = a0 X o OO R SRS 26

L < V0 X o PP 27
PUWIMITDLN ¢t bbbt e s 30
PWIMITID.C 1.t ettt sb et st nbe st b e e enentens 30

£ (0 10001 o N 32

The task at hand

The task of the project was to build and program a robot that could play table hockey with special rules, and that fulfilled
constraints on the construction. The robot was to be built from Lego bricks and meccano, with the addition of whatever
bits and pieces the constructors thought necessary. The teams were assigned two 12 V DC motors, one 6 V motor and an
RC servo, which were used for locomotion and for manipulating the stick. The robot was controlled by a small 8-bit
micro controller (see Appendix 1 — Parts List; PIC16F877 and [4]). To find its way on the hockey field, the robot could
be equipped with avariety of sensors, such as Infra Red light sensors, reflex detectors and micro switches.

The constraints imposed on the robot were among others the following (for complete rules see[5] and [6, Part I11]):
« Diameter of the body was to be less than 250 mm.
« No concave part on the bodly.
e Thestick could be nowider or longer than the puck, and should not hide the latter’ s IR emitters.
e Thestick could have no moving joints outside the robot’ s body.

4 I
Goal zone

Puck
D - €

- /

Fig. 1 The hockey field

The hockey field (see Fig. 1) isawhite surface, 2.4 x 1.2 m, with ablack goal zone in both ends. The robot was not
allowed to enter either goa zone, so some kind of sensing of the proximity to the zone was necessary. Both goals emit IR
light with different pulse modulations, as does the puck. In order to be able to see each other, the competing robots also
radiate IR (see Appendix 1 — Parts List; SFH485P and [3]) with modulation different from that of the puck and the goals.

To score agoal, the puck had to be put within 2 cm of the opponent’ s goal, without the robot entering the goal zone.
Pushing or shooting the puck into the goal could accomplish this. If the robot entered the zone the goal was not counted.

Given these premises, the team designed, built and programmed the Ad Hoc robot. This report presents the design ideas,
goals and implementation, and the final results and conclusions.

Design

The main goal of the overall design of the robot was to have asmall, agile and fast robot, being able to outmaneuver the
opponent and scoring agoal by driving the puck into goal with high speed. The team’s goal for the robot was to have
several behaviors, and then somehow weigh these together in order to achieve a“smart” result. To do this, vector
summation was used, where each behavior contributed with one vector.

Fig. 2 Robot side view Fig. 3Robot rear view

Sensing and sensory processing

Three different kinds of sensors were used in the construction; IR detectors (see Appendix 1 — Parts List; TSL261), reflex
detectors (see Appendix 1 — Parts List; ITR8307) and micro switches. The input from these devices was used for decision
making in navigation. The IR detectors were used to determine direction and distance to the goals, the puck and the
opponent (see[2]). The reflex detectors were used to tell whether the robot werein a goal zone or not. The micro
switches were used to detect if the robot had run into something. They were also used to determine whether the puck was
in the possession of the rabot or not. Two different code libraries were used for sensory input, bumplib and ir_servo.

IR

The robot had a separate processor, PIC16F876 (see [4]), which handled both IR signas and the R/C servo. This
processor was preprogrammed so it could make out the difference between the four incoming IR signals: the puck, the
opponent, the defensive goal and the offensive goal. These four targets continuously sent IR pulses, but they did so with
different frequencies, so that they could be separated by the IR-PIC, and the targets distinguished.

Five IR sensors, TSL261 (see[2]), were placed on the robot. Two situated in the front (they were placed in 90° angle),
two in the rear (also 90°), and one forward facing sensor in the front. The four ones first mentioned, called “high
sensors’, were mainly used for estimating the direction to the target — but also the distance from it. The sole front sensor,
called “low sensor”, was used to measure the distance.

High front IR

Fig. 4 Front IR sensors Fig. 5Rear IR sensorsand IR position beacon

Since the sensor values were sensitive to disturbances, and hence had a considerable amount of noise, mean value
calculation over the two last readings was used, in order to get better values.

The exact angle to the target was never calculated. Instead, a relative measurement of the IR readings was done. First, the
difference between the sum of the two rear sensors and the sum of the two front sensors was calculated. Thisway it was
determined whether the target wasin front of or behind the robot. Analogously, it was cal culated whether the target was
to the left or the right of the robot. The relative difference between the calculated values was used in order to calculate
how much to turn each of the wheels. This worked rather well.

Whenever the need for calculating the distance to a target (for example agoal) arose, the way to figure it out was to use
the strength of the IR readings. These were calibrated for each individual task, to fit accordingly. It would show that this
was harder than originally thought, since the absolute value of the readings varied significantly from run to run.

IR filtering was controlled by the slave micro controller. The only thing that had to be handled in software was the
interrupt generated when a complete byte had been sent on the serial line between the two processors (SPI) and to receive
the IR dataiin correct order. This was done in the service routine in the ir_servo library ir_sevice_routing().

Reflex detectors

Under the robot, facing down toward the table, four reflex detectors were placed — one in each corner of the robot. These
detectors sent out IR light, and measured how much was reflected from the surface of the hockey field (see partslist and
[1]). Thisreflection was presented to the robot with a value between 0 (white) and 255 (black), after converting the
analog signal with the PIC’ s built-in A/D converter. The reflex detectors were connected to the AN-ports (analog in). The
function bump_poll_sensors() in bumplib was used to run the A/D converter to sample all reflex detector channels.

This information was used for estimating whether the robot was going into a goal zone or not, which was not allowed.
Since the field had a black stripe for marking the middle of the field, the reflex detectors together with information from
the IR sensors were used to estimate if the robot wasin a goal zone or merely on the middle field stripe. So if the reflex
detectors signaled black surface, and the IR sensors signaled goal proximity, then robot was positioned in a forbidden
zone, and hence had to quit going in that direction.

Micro switches

The micro switches were used for tactile sensing. Attached to the micro switches the robot had antennae, which would
depress the switchesif it ran into something. Seven switches were used; one placed in each corner of the robot, one on the
stick, and two in the front of the robot. The two in the front were used for detecting puck possession, and the others were
used for obstacle detection. All bumpers and an optional emergency stop were connected to PORTB on the PIC. The
function bump_poll_sensors() in bumplib was used to update bumper status, e.g. reading PORTB. As mentioned in the
“Reflex detectors’ section above, this function also samples reflex detectors.

Locomotion and navigation

There are different ways of moving arobot. The Ad Hoc robot was built with two wheels, which were run independently
of each other using two separate 12 VV motors. This made it possible for the robot to turn around on the spot if necessary,
by running the wheels in opposite directions. In order for the robot to keep its balance, a small, smooth piece of Lego,
placed in the front, was used for support.

For navigation the team used a behavioral approach. The idea was to program the robot with severa behaviors, active at
the same time. They were al to have their own will, and then some coordinator was to combine these wills, and produce
some appropriate action for the robot. Each behavior should produce a “wish vector”, telling the direction in which the
behavior “wanted” to go. Thisway all the behaviors got to tell their wish, and then vector summation was used to
calculate afina direction for the robot. Depending on in which state the robot was (having the puck or not) the different
behaviors' wishes were assigned different weight, which were used in the vector summation.

There were five different behaviorsin the robot.

e Thefind puck behavior — always wanted to go toward the puck, unless the puck aready wasin the robot’s
possession. If the robot for some reason didn’t see the puck, it smply spun around, trying to locate the puck.

e Theget puck to goal behavior — always wanted to go toward the offensive goal, as long as the robot had the
puck.

* Avoid obstacles behavior —if the robot ran into something, this behavior tried to go in adifferent direction from
the original one. It also stopped the robot from going into agoal zone.

« Avoid opponent behavior —tried to get the robot not to run into the opponent.

¢ Random behavior — produced a random (small) wish. Thiswasto avoid that the other behaviors would sum up to
anowish, i.e. to wish the robot in exactly opposite directions. A small random vector wouldn't affect the
behaviors normally, but in such a case it could add enough to get the robot out of the clash.

All different behaviors were implemented in the behavior module and the wish summation and actual motor speed
settings done in the main file, function sequencer().

Manipulation

In order to be able to control the puck, the robot had a stick — seen in the figures below. The stick design was somewhat
problematic, since the robot should be able to turn in different directions and still keep the puck (if the robot had it, of
course). The team decided that the best way to achieve this was by swinging the stick over the puck, not just from the
right to the left — which would have made us lose the puck more easily. In order to achieve this, an R/C servo was
connected to the stick, to be able to steer it into the appropriate position at al times.

Fig. 6 Stick maneuver from full left to full right 3

The appropriate position is dependent of the robot’ s current state. If in possession of the puck (which was determined by
combining the information from the front bumpers and the IR readings), the robot should keep the stick on the opposite
side from the direction in which the robot was turning. This would make the stick swing virtually all the time, if not
suppressed by a turning rate threshold in the software. If the robot were to turn less than this threshold value, the stick
swing was skipped. This proved to work rather well; the robot could turn pretty much without loosing the puck.

In the code, the check_club() function in the main program file was used to position the stick on the appropriate side of
the puck. If the robot had possession of the puck and it was turning rather fast, the motors were stopped until the stick
swing was complete. Otherwise, e.g. if approaching the puck from a distance, there was no need to stop the robot and
move the stick all the time, so in this case the function would exit right away. This proved to be rather successful as fast
movements from side to side were not carried out at all. Their_servo lib was used for the actua servo position setting, as
servo positioning was also controlled by the slave PIC and sent through the SPI interface used for IR data reception. The
function servo_set_club() and the macros CLUB_LEFT and CLUB_RIGHT were used for setting the right position data
to transmit on the SPI line.

Integration of the above

To put all thistogether, a state machine was implemented, which kept the robot in the correct state at all times. There
were three states, but more could easily have been added, if needed. The three states were “Have puck”, “Don’'t have
puck”, and “Score”. The “Score” state was rather special, so a completely predefined movement was used for that one.
The other two weighed all the behaviors' wishes together, and used vector summation to calculate afina direction vector.
In both of these states, the most important behavior was to avoid obstacles (among other things because the robot was not
allowed to enter the goal zones), so the weight of this behavior was greater than the sum of the weights of the rest of the
behaviors. Thisway, the avoid obstacles behavior would always get its way. The avoid opponent behavior had aweight
that was determined by switches on the motherboard (see section Electronics; DIP switches) with a value ranging from 0
to 3, setting the overall “aggressiveness’ of the robot. The random behavior was set to alow weight, so it wouldn’t
interfere with the others too much. The only use for the random behavior was to avoid livelock, when all the other
behaviors wishes would add up to a zero vector.

« Don't have puck — here the find puck behavior was important, so the weight was set rather high.
* Have puck —now the robot’s goal was to get the puck to goal, which is why the weight for that behavior was set
high.

The “statemaching” was implemented in the main program file, with behavior activation in the main() function and state
control in the decice_state() function.

After the main loop had asked all the behaviorsto tell their wishes, the sequencer was told to carry out the order. The
sequencer then did the vector summation from all the behaviors' wishes. When it knew which way to go, it decided
whether or not to swing the stick, and then it gave speed orders to the two wheels, so that the robot would move in the
wanted direction.

The score state was activated whenever the robot was in possession of the puck, was facing toward the opponent’ s god,
and was closetoit. In order for the robot to always try to score, regardless of the opponent’ s position, a completely
separate movement scheme was programmed for this purpose. In order to accomplish this, the robot was set to the
maximal speed possible (so the puck would get enough velocity to reach all the way to the goal when the robot stopped at
the goal zone), and then kept an eye at the IR readings to know when enough proximity to the goal was achieved. When
the robot got close enough — or when the reflex detectors signaled that the robot was in the goal zone — it would stop, and
hope that the puck would get into the goal.

Software implementation

Behaviors

Each behavior described in Locomotion and navigation is implemented in a function in behavior.c (see Appendix 4 —
Source Code). These functions calculate awish vector, indicating in which direction the behavior ‘wishes' to go. The
behavior agorithmswork as follows:

e behavior_get puck() — This behavior uses the IR readings of the puck to determine if the puck isin front of or
behind the robot, and if the puck is to the left or the right of the robot, as described in the section IR above. If the
readings are too small on all sensors, the puck is not seen, and the wish vector is set to full right spin. If the puck
is behind the robot, the y-component of the vector (forward-backward component) is set to zero, because the
robot shouldn’t back into the puck. When the puck isin front of the robot, the x-component (left-right
component) of the wish vector is set to zero if below a certain threshold, in order to avoid an oscillating behavior
when closing in on the puck. Otherwise, the largest of the x and y valuesis set to MAX_WISH, and the other is
scaled accordingly.

e behavior_puck_to_goal() — This behavior uses aimost the same approach as behavior_get puck() when
calculating where the target is. The main difference is that no consideration is taken as to whether the goal is
behind the robot. Thisis because the vast amount of disturbances from other IR sources, which makes it virtually
impossible to find the goal in a reasonable manner when the goal is behind the robot. Instead the behavior
assumes that if the goal isn’t in front of the robat, it can be found behind the robot, hence the behavior wants to
stand and turn in order to try to find the target. On the other hand, if the goal isin front of the robot, the same
scaling of the x and y vector components as in the behavior_get_puck() is carried out.

e behavior_avoid_opponent() — This behavior isthe opposite of behavior_get_puck(), but when talking about the
opponent, not the puck. The wish vector is calculated in the exact same manner, and then the direction is
reversed in order to get a repelling conduct. One difference is that if the opponent isn’t seen, the behavior
doesn’t want to turn around to try to find it. Instead a zero wish is produced.

e behavior_avoid_obstacles() — Tries to avoid running into obstacles. To accomplish this, the behavior investigates
whether any of the micro switches has been depressed. If thisisthe case, the behavior wishesto go in the
opposite direction from where the depressed switch is situated. The input from the front bumpers is suppressed
when carrying the puck, since otherwise the behavior will interpret the puck as an obstacle. More important is
the reflex detector inputs, used to avoid running into the goal zones. If any of the reflex detectors indicates that
the surface is black, and the IR sensors give a strong goal signal reading, the behavior assumes that the robot is
inagoal zone, beit offensive or defensive, and therefore gives a strong wish to go in the reverse direction.

e behavior_random() — produces a small random wish, in order to avoid livelocks. This wish is small enough not
to disturb the other behaviors wishes, but sufficient enough to generate a movement if all the other behaviors
wishes were to sum up to zero.

Behavior collaboration

Which behaviors are used is decided by which state the robot isin. The starting state is STATE_NOPUCK. The state
machineisimplemented in main() in adhoc.c (see Appendix 4 — Source Code). In each loop of the state machine
decide_state() isrun to decide if a new state should be entered, based on the sensor input available to the robot. Also, the
weight vector is updated according to the new state. In each state a call to the appropriate behavior functionsis carried
out, in order to update the wish vector. Then sequencer() is run to combine the wishes from the behaviors.

The state switching logic in decide_state() works as outlined below:
if in STATE_SCORE
> next state is STATE _NOPUCK (just nmade a goal, “reset” statenachine)
else if the puck is in the robot’s possession
if the robot is within shooting range
robot can try to make a goal > next state is STATE SCORE
el se
robot has to go for the goal - next state is STATE _OFFENCE
el se (the robot does not have the puck)
if the puck is in the opponent’s goal zone
robot unknow ngly scored > next state is STATE_SCORED
el se
robot has to go for the puck = next state is STATE_NOPUCK

The sequencer() uses some heuristic methods for deciding the final input to the robot’ s motors. The algorithm works as
outlined below:
if total y-wish is zero
if total x-wish is zero
y=0 and x=0 > stop
el se
y=0 but x!'=0 - stand and turn
el se
turning rate ::= abs(x-w sh/y-w sh)
if (turning rate < 0.6)
smal | angle = no angle - strai ght ahead
else if (turning rate < 1.0)
medi um angl e > ahead with slight turn
el se
large angle - stand and turn

Programming environment, computer hardware, and electronics

Programming environment
The programming environment used throughout development of the robot control software consisted of the following
software:

¢ GNU Emacstext editor (see[7])

e Microchip MPLAB™ Integrated Devel opment Environment (see [8])

e Hi-Tech PIC C Compiler (see[9])

e Hi-Tech PIC Object Linker.

Computer hardware

The computer hardware on the robot consisted of two micro controllers from Microchip; the main processor PIC16F877
(see [4] and Appendix 3 — Circuit Diagrams; Motherboard) and the slave processor PIC16F876 (see [4] and Appendix 3 —
Circuit Diagrams; Motherboard).

Electronics

The provided motherboard was extended with wiring and sensory equipment. See Appendix 3 — Circuit Diagrams;
Motherboard for a schematic picture of the motherboard wiring.

IR-detectors
The five |R-detectors were connected to the J3-J7 connectors, see section B1, C1 and D1 in the motherboard schematics.

Reflex detectors

The reflex detector transmitters were daisy chained and connected to a driver board, provided by the course
administration. The four reflex detector sensors were connected to the analog input pins ANO:3 connected to J15, pins 2-
5, see section C5 in the motherboard schematics.

Micro switches

The 7 micro switches used as bumpers were connected to PORTB (RB1:7) connected to J2 (pins 7-1) and ground on J13
(pins 7-1), see section C6 in the motherboard schematics.

Motor wiring

The PIC ports CCP1 and CCP2 were used as PWM output signalsto the 12V motors (driving the wheels). The left motor
used CCP1, through awire connected from J16 pin 7 (CCP1) to J8 pin 1 (MOTORL enable), and the right motor used
CCP2, through a wire connected from J16 pin 6 (CCP2) to J8 pin 3 (MOTOR?2 enable) — see sections D5 (CCP) and G5
(MOTOR enable) in the motherboard schematics.

The PIC ports RE1 and RE2 on PORTE were used as direction control signals to the 12V motors. The left motor used
RE2, through a wire connected from J15 pin 10 (RE2) to J8 pin 2 (MOTOR1 direction), and the right motor used RE1,
through a wire connected from J15 pin 9 (REL) to J8 pin 4 (MOTOR2 direction) — see sections C5 (REL,2) and G5
(MOTOR direction) in the motherboard schematics.

The 12V motors were connected to the MOTOR outputs at J11 (left motor as MOTORL1 and right motor as MOTOR?),
see section F8 in the motherboard schematics.

Stick
The stick servo was connected to J22 pin 4 (SERV OL1 control), J23 pin 7 (Vcc) and J24 pins 7 (GND).

DIP switches

Two of the DIP switches S2, connected to J10 pins 1 and 2, were used by the software to determine the weight for the
“avoid opponent” behavior. Wires connected J10 pin 1 and 2 to J21 pins 9 and 11 (PORTD, RD3 and 2) — see sections F2
(S2), D2 (J10) and D7 (J21) in the motherboard schematics.

Bootloader

The Microchip programming environment offers convenient programming of the PIC processor through a serial RS232-
interface and a piece of code in the PIC called “bootloader” (supplied with the Hi-Tech PICC Compiler, see[9]). The
RS232 interface is not used by the robot during competition and is not covered in this document, see [8] for more
information.

Results

It was quite hard to program the robot to do the right things. The base implementation in the state machine and behavior
algorithm was rather sturdy, and never had to be changed much from the original idea. The main problem was finding the
various threshold values for the sensor readings, e.g. IR signal strength threshold for stopping the motors when scoring.
Sometimes the robot had a tendency to stop way too early, and sometimes way too late. This problem was a so related to
the fact that the robot had its own mind as to which speed it wanted to travel with. Even when the speed wasn't changed
in hardware, it varied tremendously from run to run, and it was never clarified why. (One thought was that one of the
accumulators was broken with a“memory effect” and stopped charging at low capacity.) It was also hard to make the
robot not to think that the puck was the opponent goal. It seemed that the IR signals from the puck and the goal were alike
enough to get the robot seriously confused in some situations. A threshold value for when to think that the signals from
the goal actually were the goal and not the puck was sought, but this was also areally hard task to accomplish.

Ad Hoc did not do very well in the table hockey tournament. It lost or played even against all opponents. In one match it
even broke down and had to be removed from the table for the entire game. For some reason it didn’t run the programin
the computer. Still no one knows why this happened.

The different behaviors seemed to work together well, although most of the time it was always one behavior that got its
way, and the others' wishes were totally suppressed. Maybe with more time at hand, the weights between the wishes
could have been calibrated more, to make the behaviors collaborate better.

Conclusions

The domain in which the robot was to operate was a well-defined one: a hockey field, a puck, an opponent and two goals.
In thiskind of environment, the behavior based approach, with a bunch of wishes and a summation a gorithm might not
be the best one to use. Maybe more well-defined locomotion schemes for different situations should have been used, not
trying to mix different wills together. It proved rather hard to weigh together all the wishes, and in the end the weights
were virtually so that only one behavior got al of the saying at each given moment.

When talking about the physical appearance of the robot, the construction was fairly good. The only thing where some
problem occurred was the little piece of Lego we used to keep the robot from tipping over. This seemed to get pretty
much pressure, and at some times it seemed like it dowed the robot down. Some thoughts as to replace this piece with a
castor was put fourth, but that would have made the robot so high off the ground that the stick would have covered the IR
transmitters of the puck, which it was not allowed to do, so the smooth piece of Lego was kept instead.

Appendix 1 — Parts List
ITR8307 Subminiature High Sensitivity Photo Interrupter.
Manufacturer: Everlight. Part no: ITR8307.

PIC16F877 40-pin 8-Bit CMOS FLASH Micro controller.
M anufacturer: Microchip Technology Inc. Part no: PIC16F877.

SFH485P GaAlAs Infrared Emitter.
Manufacturer: Siemens. Part no: SFH485P.

TSL261 IR Light-to-Voltage Optical Sensor.
M anufacturer: Texas Advanced Optoelectronic Solutions (TAOS). Part no: TSL261.

HL149 12V 10:1 Motor
M anufacturer: Micromotors. Part no: HL149.

Appendlx 2 — References

Data sheet for ITR8307. Subminiature High Sensitivity Photo I nterrupter. Everlight.
Data sheet for TSL261. IR Light-to-Voltage Optical Sensor. Texas Instruments.

Data sheet for SFH485P. GaAlAs I nfrared Emitter. Siemens.

Data sheet for PIC16F87X. 40-pin8-Bit CMOS FLASH Micro controller. Microchip.

Competition rules. Updated competition rules part 1 and 2.
http://ww. nada. kt h. se/ kurser/ kt h/ 2D1426/rul esl. gif,

ht t p: // ww. nada. kt h. se/ kur ser/ kt h/ 2D1426/ r ul es2. gi f. Bratt, Mattias.

Course Notes for the Robotics and Autonomous Systems course 2000. Course Notes | -1 X. Bratt, Mattias.
The GNU Project. GNU Software. ht t p: / / www. gnu. or g/ .

MPLAB Manual. MPLAB™ |IDE, Simulator, Editor — User’s Guide. Microchip.

PIC C Manual. PIC C ANSI C Compiler —User’s Guide. Hi-Tech.

gpwNE

© N

Appendix 3 — Circuit Diagrams

Motherboard

Fra-programmesd FIC

2
BAS Motherboard Schematic

10

Appendix 4 — Source Code

Adhoc.c

/*
* adhoc - mmin program
*/
#i ncl ude <pic. h>
#include <stdlib. h>
#i ncl ude <math. h>
#i ncl ude <sys. h>
#i ncl ude "behavior.h"
#i nclude "pwnrib. h"
#include "ir_servo.h"
#i ncl ude "bunplib. h"

/| Possible states
#def i ne STATE_NOPUCK
#def i ne STATE_OFFENCE
#def i ne STATE_SCORE
#def i ne STATE_SCORED

oOFrNW

/1 The state we're in
bankl char state = STATE_NOPUCK;

/'l Motor speed and wi sh constants

#def i ne MAX_SPEED 110
#def i ne MAX_TURN_SPEED 127
#def i ne GOAL_SPEED 120
#def i ne GOAL_SPEED TI ME 40000
#define TURN_MULTI PLI ER 85
#define CLUB_SW NG MOTOR SPEED 78
#define CLUB_SW NG TI ME 100000

#defi ne SEQUENCER_STRAI GHT_AHEAD RATIO 0.60 // xyratio below this => drive straight ahead
#defi ne SEQUENCER_FI NE_TURNI NG RATIO 1.00 // xyratio between this and above => drive and fine tune
#define CLUB_SW NG MOTOR DI FF SEQUENCER_STRAI GHT_AHEAD RATI O * TURN_MJULTI PLI ER

/1 The final bearings after weight- and nean-cal cul ati ons
bankl [ong x

bankl long y

/| Speed cal cul ation variabl es
bankl char | eft_speed

bank2 char ri ght _speed

| ong W,

bank3 doubl e xyratio
persistent |ong goal _speed_time

// Gobal iterators..
bank2 int i;

bank2 char j;

bank2 I ong | oop

/* emergency_stop
* External interrupt has signalled request for fast shutdown
*/
voi d energency_stop(void) {
pwm_st op_not ors()
servo_set_cl ub(0)

while (1) {
; /1 deep sleep
}

/* check_cl ub
* |f we have puck and turning,
* see to it that the club is in the right position
*
* Paraneters: left_notor - wanted left notor speed
* right_notor - wanted right notor speed
*
/

voi d check_cl ub(char left_motor, char right_motor) {
static bank2 bit wait_for_sw ng;

wai t _for_swing = 0;
if ((left_motor - right_notor > CLUB_SWNG MOTOR D FF) &&
(servo_club_pos == CLUB_RIGHT)) {
// turning right, need to have club on left side!
servo_set_cl ub(CLUB_LEFT);
if (have_puck())
wait_for_swing = 1;

}
else if ((right_nmotor - left_notor > CLUB_SW NG MOTOR_ DI FF) &&
(servo_club_pos == CLUB_LEFT)) {
/1 turning left, need to have club on right side!
servo_set_cl ub(CLUB_RI GHT);
if (have_puck())
wait_for_swing = 1;

}

if (wait_for_sw ng) {
/1 we have the puck, wait a while so club really gets sw nged to other side
for (loop = 0; loop < CLUB_SWNG TIME; | oop++) {
if (loop == CLUB_.SWNG TIME/ 4) { // start notors after half swing tine
if (servo_club_pos == CLUB_LEFT)
pwm set _not or _speed(- CLUB_SW NG_MOTOR_SPEED,
CLUB_SW NG_MOTOR_SPEED) ;
el se
pwm set _not or _speed(CLUB_SW NG_MOTOR_SPEED, -
CLUB_SW NG_MOTOR_SPEED) ;
}
/'l stop notors early (nomentumnl)
else if (loop == CLUB_SWNG TIME * 3/ 8) {
pwm st op_notors();
br eak;

/* stand_and_turn
* yis small or angle is large so we want to stand and turn with speed speed
*/
voi d stand_and_turn(char speed) {
if (x >0) { /1 Turn right
left_speed = speed;
ri ght _speed = -speed;

}

else if (x <0) { //Turn left
left_speed = -speed;
ri ght _speed = speed;

12

/* sequencer
* wei gh all behavi our X-
run notors accordingly

and Y-
*
*
* Par anms:
* Return:
*/

voi d sequencer (voi d)

{

none

sets global x and y

/] reset bearings
0;
0;
0;

X
y
w

—
o
=

(i=0; i <NUM BEHAVI CRS;

/1 get all

i++) {
behavi ors'

/] calculate total weight
w += behavior _wei ght[i];

}

/1 Calculate the nmean wi sh fromall
X I=w

y I=w

/1 Now, calculate the notor speeds
| eft _speed = O;

right_speed = 0;

/1 1f no forward w sh

if (y =0 {

/] 1f there is a lateral w
if (x 1=0) {

wi shes and cal cul ate nean,

w shes
X += behavi or _bearing_wi sh[i][X]
y += behavi or_bearing_wi sh[i][V]

* behavi or _weight[i];
* behavior _weight[i];

the behaviors

sh
/1 Turn

st and_and_t ur n(MAX_TURN_SPEED) ;

}
I

el se {

el se we don't do anything -> stop

xyratio = fabs(((float)x)/y);
/* If we're going really straight,

* set full
*/

speed on both motors to avoid oscillating behavior

if (fabs(xyratio) < SEQUENCER STRAI GHT_AHEAD RATI O ({

left_speed =

y >= 0 ? MAX_SPEED: - MAX_SPEED,

right _speed = | eft_speed;

}
I

If we're going kinda straight,

let's go forward and turn sonewhat

else if (fabs(xyratio) < SEQUENCER FI NE_TURNI NG RATI O) {

/*
* x == 0, since that

* and both notors wil

W don't need to take care of

makes xyratio == 0,
| have the sane speed */

if (x>0) { // W wanna go to the right...

| eft _speed
ri ght _speed

}

else { // Leftward dri
ri ght _speed
| eft _speed

}

/1 This is for

if (y <0) {
ri ght _speed
| eft _speed

}

}
// If the ratio is larger,
el se {

= MAX_SPEED,
= (signed char) (MAX_SPEED - xyratio * TURN_MJLTI PLI ER);

vi ng
= MAX_SPEED,
= (signed char) (MAX_SPEED - xyratio * TURN_MJLTI PLI ER);

backwar ds driving

= -right_speed;
= -left_speed;

stand in one place and turn

st and_and_t ur n(MAX_TURN_SPEED) ;

}
}

/1 Put the club in the right position
check_cl ub(l ef t _speed, right_speed);

pwm set _not or _speed(| ef t _speed,

ri ght _speed);

13

/* Decides what state we should be in based on new readi ngs of sensor input
*/
char deci de_state(char state)

{
static bankl char new state;
static bankl char avoid_opp_wei ght;
/'l update environment info
avoi d_opp_wei ght = (RD3 << 1) | RD2; // avoid opponent weight
bunp_pol | _sensors(); /| update bunpers
ir_wait_for_data(); /] update IR
for (i =0; i <5 i++) {
for (j =0;) <3; j++) {
ir_tenp_data[i][j] = ir_data[i][j];
}
ir_wait_for_data(); // new IR for average cal cul ations
for (i =0; i <5; i++) {
for (j =0; j <3; j++) {
ir_avg_data[i][j] = (ir_tenp_datal[i][j] + ir_data[il[j]) / 2;
}
}
if (state == STATE_SCORE) {
new_state = STATE_NOPUCK;
}
else if (have_puck()) {
/1 to STATE_OFFENCE or STATE_SCORE if nearby opponent goal
if (within_shooting_range()) {
new _state = STATE_SCORE;
/* no wei ght adjustment needed for scoring,
* this will soon be done in STATE_NOPUCK
*
/
}
el se {
new_state = STATE_OFFENCE;
behavi or _wei ght [BEHAVI OR_GET_PUCK] = O0;
behavi or _wei ght [BEHAVI OR_PUCK_TO GOAL] = 4;
behavi or _wei ght [BEHAVI OR_AVO D_OBSTACLES] = 6+avoi d_opp_wei ght;
behavi or _wei ght [BEHAVI OR_AVO D_OPPONENT] = avoi d_opp_wei ght;
behavi or _wei ght [BEHAVI OR_RANDOM = 1;
) }
else if (puck_in_zone()){ // No puck but puck w thin goal zone -> STATE_SCORE
new_state = STATE_SCORED;
}
else { // No puck
new_state = STATE_NOPUCK;
behavi or _wei ght [BEHAVI OR_CGET_PUCK] = 4;
behavi or _wei ght [BEHAVI OR_PUCK_TO GOAL] = O0;
behavi or _wei ght [BEHAVI OR_AVO D _OBSTACLES] = 6+avoi d_opp_wei ght;
behavi or _wei ght [BEHAVI OR_AVO D_OPPONENT] = avoi d_opp_wei ght;
behavi or _wei ght [BEHAVI OR_RANDOM = 1;
}
if (new state != state) {
/* if changing state,
* we want to clear the vector
* (to avoid disabl ed behavi ors' wi shes from summ ng up)
*
/
for (i=0; i < NUM BEHAVICRS; i ++)
behavi or _bearing_wi sh[i][X = 0;
behavi or _bearing_wi sh[i][Y] = 0;
}
}
return new state;
}

14

/* We think we have scored a goal!!

*/
voi d

}

/* Try to score a goal

*/
voi d

{

voi d

scored(voi d) {

/1 Back up

pwm set _not or _speed(- MVAX_SPEED, - MAX_SPEED) ;
for(loop = 0; loop < 150000; |oop++);

// Stop, wave the club and flash sone |ights
pwm set _not or _speed(0, 0);
for(i =0; i <2; i++) {

servo_set _cl ub(CLUB_RI GHT) ;

PORTD = 0b01010101;

Do a noticeable gesture

for (loop = 0; loop < CLUB_SW NG TI MVE; | o0p++);

PORTD = 0b10101010;
servo_set_cl ub(CLUB_LEFT);

for (loop = 0; loop < CLUB_SW NG TI ME; | o0p++);

}
PORTD = 0;

score(voi d)

by driving the puck into the goal

/1 Goal proximty reached, full speed ahead and SCORE!

pwm_set _not or _speed(GOAL_SPEED, GOAL_SPEED) ;

for (loop = 0; loop < GOAL_SPEED TIME; | oop++) {

bunp_pol | _sensors();
if (bunp_reflexes !'= 0 ||

ir_avg_data[| R_FRONT_LOW [OFFENSI VE_GOAL]
Il reflex detectors signals goal

br eak;
) }
pwm set _not or _speed(- MVAX_SPEED, - MAX_SPEED) ;
scored();

mai n(voi d)

zone or |R signal

zone at high speed

> | R_ZONE_LOWBENS THRESHOLD) {

is very high -> STOP!!'!

/1 Use PORTD LEDs for status indication and debugging, RD3..2 for avoid opponent wei ght

TRI SD = 0b00001100;

PORTD = 0;

/1 Init all lowlevel libraries

di();

pwminit();

pwm set _not or_speed(0, 0); // Stop nmotors

pwn |l eft_comp = 1.0; /1 Motor downscaling factors
pwm right_conp = 0.98;

bunp_init();

| NTE=1;

ir_init();

PEI E=1;

ei();

ir_wait_for_data(); /'l wait for at |east one conplete |IR-reading

servo_set _cl ub(CLUB_RI GHT) ;

15

/1 Statemachi ne

while (1)
{
state = decide_state(state);
switch (state) {
case STATE_NOPUCK:
behavi or _get _puck();
behavi or _avoi d_opponent () ;
behavi or _randon();
behavi or _avoi d_obst acl es();
sequencer();
br eak;
case STATE_OFFENCE:
behavi or _puck_t o_goal ();
behavi or _avoi d_opponent () ;
behavi or _avoi d_obst acl es();
behavi or _random() ;
sequencer();
br eak;
case STATE_SCORE:
/1 Score and signal!
score();
br eak;
case STATE_SCORED:
/1 Ooops, we thought we didn't have the puck but
scored();
br eak;
default: // Sonething is wong,
state = STATE_NOPUCK;
br eak;
}
}

}
void interrupt |SR(void)
if (INTF) {
I NTF = 0;
emer gency_stop();

}
else if (SSPIF)
ir_service_routine();

}
Behavior.h
/*
* behavior.h - interface for behavior nodul es
*
/

#i fndef __ BEHAVI ORS_H
#define __BEHAVI ORS_H

// 1st dinension in bearing w shes is behavior

#def i ne BEHAVI OR_GET_PUCK 0
#define BEHAVI OR PUCK TO GOAL 1
#def i ne BEHAVI OR_GO HOME 2

#defi ne BEHAVI OR_AVO D _OPPONENT 3
#def i ne BEHAVI OR_AVO D _OBSTACLES 4
#def i ne BEHAVI OR_RANDCOM 5
/1 * 1 MPORTANT * When addi ng a new behavi or,
/1 increase vector dinension bel ow
#def i ne NUM_BEHAVI ORS 6

/1 2nd dinension in bearing wishes is direction
#define X 0
#define Y 1

/1 Gobal IR data area for average cal cul ati on of puck and goal

let's reset state...

it's a clear goal

readi ngs

extern bank3 int ir_tenp_data[5][3]; // 5 sensors, 3 16bit readi ngs each

extern bank3 int ir_avg_data[5][3];

/'l Upper bound for behavior w shes
#define MAX_W SH 127

sinal!

16

/1 The bearing in which all the behaviors wi sh to go.

Il [x,y] for all behaviors - should be nornalized between 1 and MAX W SH
#define _wi shT signed char

extern bank2 _w shT behavi or _beari ng_w sh[NUM BEHAVI ORS] [2] ;

/| Behavi or weights
#define _weightT char
extern bank2 _wei ghtT behavi or _wei ght [NUM_BEHAVI ORS] ;

/* within_shooting_range

* Check if it is time to "shoot" and do the goal gesture
* Pre-cond: a previous check of puck possesion is assuned
* Return: 1 if withing shooting range, 0 otherw se

*/

char within_shooting_range(void);

/* puck_i n_zone

* Check if the puck is in the offensive goal zone
*/

char puck_i n_zone(void);

/

* % ok

have_puck

- check if puck is in front of robot

*

* Return: 1 if puck is in position, O otherw se
*/

char have_puck(void);

/
puck_| ost
- check if we no I onger have puck

EE

* Return: 1 if puck is no longer in position
*/
char puck_| ost (void);

/-k

* behavi or _get _puck

* - go for puck or try to |ocate puck
*/

voi d behavi or _get _puck(void);

/-k

* behavi or _puck_t o_goal

* - drive with puck towards goal

*/

voi d behavi or _puck_to_goal (void);

/*

* behavi or _go_hone

* - go to defensive goal after scoring
*/

voi d behavi or _go_hone(void);

/* behavi or _avoi d_opponent
* - try to avoid hitting (or get hit by!) the other robot
*/

voi d behavi or _avoi d_opponent (voi d);

/* behavi or _avoi d_obst acl es

* - try (very nmuch!!) to avoid hitting hard non-noving evil things!
* al so avoid goal zones (they're off limts pal!)
*/

voi d behavi or _avoi d_obst acl es(voi d);

/* behavi or _random
* - conpletely random wi shes to avoid freezing in "dead spots"
*/

voi d behavi or _randon(voi d);

#endif /* _ BEHAVI ORS H */

17

Behavior.c

/*
* behavi
*/
i ncl ude
i ncl ude
i ncl ude

or.c - inplenmentation for behavi or nodul es
<pi c. h>

<mat h. h>

"behavi or. h"
include "ir_servo.h"
include "bunplib. h"
include "stdlib.h" /1 rand()
#define | N_ZONE_FRONT

#define | N ZONE_REAR

1
2

#def i ne MOVENTUM COUNTER 8

bank2 _wi shT behavi or _beari ng_w sh[NUM BEHAVI ORS] [2] ;
bank2 _wei ght T behavi or _wei ght [NUM_BEHAVI ORS] ;

/1 x,y for use in local calculations in each behavior
static bank2 long x;

static bank2 long y

bank3 int ir_tenp_data[5][3]
bank3 int ir_avg_data[5][3]
/1 1R readings in four directions

static bank2 | ong
static bank2 | ong
static bank2 | ong
static bank2 | ong

char within_shooti

front
back;
left;
right

ng_range(void) {

/'l 5 sensors

3 16bit readings each

static bank2 bit in_range = 0
static bank2 bit in_range_last = 0
/1 Check for closeness, and that we're facing the right direction (at |east alnost)

/* 1f one of the high front sensor is facing the goal, center

* and the reading is *very* high -> not a good tinme to shoot.

*

* |f the high sensors are not over the goa

we are up to 45 degrees off goa
(~ angl e check)

threshold, we *might* be in position for shooting

* but we can also be "goal blind" - use front |ow sensor to check this. (~ proxi mty check)
*/
in_range = (ir_avg_data[l R_FRONT_LEFT] [OFFENSI VE_GOAL] < | R_GOAL_H SENS_OVERFLOW &&
ir_avg_data[| R_FRONT_RI GHT] [OFFENSI VE_GOAL] < | R_GQOAL_HI SENS_OVERFLOW &&
ir_avg_data[| R FRONT_LOW [OFFENSI VE_GQAL] > | R_GOAL_LOWSENS_THRESHOLD) ;

if (lin_range_last) {

in_range_l ast = in_range
return 0
} .
in_range_last = in_range
return in_range
}
/ *
* |s the puck in the goal zone?
*/

char puck_in_zone(void) {
return ((ir_avg_data[l R_FRONT_LOW [PUCK]
wi t hi n_shooting_range())

}

> IR PUCK_STRONG SIGNAL * 3 / 4) &&

18

}
/*

i n_goal _zone

are we in a goal zone?

Return: 0 if not in any goal zone,

IN_ZONE_FRONT if any of front reflex detectors is in goal zone
IN_ZONE_REAR if any of back reflex detectors is in goal zone

i n_goal _zone(char goal) ({
if (bunp_reflexes == 0)
return O;
el se {
if (ir_avg_data[l R FRONT_LOW [goal] > | R_ZONE_LONSENS_THRESHOLD | |
ir_avg_data[| R FRONT_RI GHT][goal] > | R ZONE_H SENS_THRESHOLD ||
ir_avg_data[| R FRONT_LEFT][goal] > | R ZONE_H SENS THRESHOLD)
return | N_ZONE_FRONT;
else if (ir_avg_data[l R REAR RIGHT][goal]> | R ZONE_HI SENS_THRESHOLD | |
ir_avg_data[| R_REAR_LEFT][goal] > | R_ZONE_HI SENS_THRESHOLD)
return | N_ZONE_REAR
el se
return 0O;
}

* Do we have the puck?

*/
char

{

}
/*

have_puck(voi d)

static bank2 bit have_puck = 0;
/1 Abit telling wether we have had the puck or not
static bank2 bit have_puck_bit = 0;

if (!have_puck_bit) {
/* If either of puck bumpers are active and we have a reasonably
* strong | R-reading, we consider the puck to be in our posession
*/
have_puck = (ir_avg_data[| R_FRONT_LON [PUCK] > | R PUCK_STRONG SI GNAL) &&
(bunmp_bunper _act i ve(BUMPER_PUCK_LEFT) ||
bunp_bunper _act i ve(BUMPER_PUCK_RI GHT)) ;

}
else { // is puck lost? bunpers will give contact noise, only check IR
have_puck = ir_avg_data[| R_FRONT_LOW [PUCK] > | R_PUCK_STRONG Sl GNAL;

have_puck_bit = have_puck;

RD6 = have_puck;
return have_puck;

* Calculate a wish to go to either goal

*/

voi d find_goal (char goal) {

static bank2 bit stand_and_turn = O;

front = ir_avg_data[l R FRONT_LEFT][goal] + ir_avg_data[l R _FRONT_RI GHT][goal];
left = ir_avg_data[l R FRONT_LEFT][goal] + ir_avg_data[lR REAR LEFT][goal];
right = ir_avg_data[l R FRONT_RI GHT][goal] + ir_avg_data[l R REAR RI GHT][goal];

stand_and_turn = 0;

if (in_goal _zone(goal) == I N_ZONE_FRONT) {

We are in the goal zone and don't want to go any further
0;

0;

<X\|
-~

}
else if (ir_avg_data[l R REAR RIGHT][goal] > 2 * | R_.NO SE_THRESHOLD | |
ir_avg_data[l| R_ REAR LEFT][goal] > 2 * | R_NO SE_THRESHOLD)
{ // Coal is behind us, stand and turn around to "see" it better
stand_and_turn = 1;
} else if (front > I R_GOAL_NOT_SEEN THRESHOLD) ({
// Coal is virtually straight ahead
I/l Scale y according to how strong signal is in terms of it's max reading
y = (int)((float) MAX WSH * front / | R GOAL_H SENS_THRESHOLD) ;
X ir_avg_data[l| R_ FRONT_RI GHT][goal] - ir_avg_data[l R FRONT_LEFT][goal];
x = (int)((float) MAX WSH * x / | R_GOAL_HI SENS_OVERFLOW ;
if (x > MAX_WSH)

19

x = MAX_W SH;
else if (x < -MAX_WSH
X = - MAX_W SH,
if (y > MAX_W SH

y = MAX_W SH;
elseif (y <0)
y =0;

el se {
I/l Coal is in front,
stand_and_turn = 1;

}

// Avoid witing this code in two places above...
if (stand_and_turn) {

but the angle is big - stand and turn

y =0;
X = right - left;
if (x == 0) {
/* 1f the unlikely event that x=0 is to happen,
* don't stop - stand and turn in a "smart"
* direction (eg. avoid swi nging club)
*/
X = servo_club_pos == CLUB_LEFT ? MAX WSH : - MAX W SH;
el se {
X =x >07? MAXWSH : -MAX_W SH;
}
}
}
/*

* Behavi or that produces a whish for going to the puck
*
/
voi d behavi or _get _puck(voi d)
{
// Do sonething smart in order to find the puck
/1 summarize the front, rear,
// hint as to where the puck m ght be
/1 if wew have the puck already,
if (have_puck()) {
Y = 0

find_puck shoul dn't

left and right to get sone

l ook for it anywhere el se

y 0;

el se {
front = ir_avg_data[| R FRONT_LEFT][PUCK] + ir_avg_data[l R_FRONT_RI GHT] [PUCK] ;
back = ir_avg_data[l R REAR LEFT] [PUCK] + ir_avg_data[| R_ REAR Rl GHT] [PUCK] ;
left = ir_avg_data[l R FRONT_LEFT][PUCK] + ir_avg_data[l R REAR LEFT][PUCK];
right = ir_avg_data[| R_FRONT_RI GHT] [PUCK] + ir_avg_data[l R REAR RI GHT] [PUCK] ;
/] Cal cul ate sonme puck position, relative to mne.

/Il +y is forward,
right - left;
front - back;

and +x is right

X =

y =

// Do we really

if (front <2 * NO SE_THRESHOLD &&
* NO SE_THRESHOLD &&
* NO SE_THRESHOLD &&
*

back < 2

see the puck?
|
|

left <2 |

R
R
R

right <2 I R_NO SE_THRESHOLD) {

/1 Puck is not seen, turn around (right) and search for it
x = MAX_W SH;

y =0

/1 This behavior never wants to go backwards. ..

If the puck is behind

/1 us, we rather want to turn in the puck's general direction
else if (y <0) {
y =0;
X =x >0 7? MMX WSH : -MAX_ W SH;
}
el se {

/* W see the puck in front of us and

* wish to go there very much (=MAX_W SH)

* Set the larger of the two values to MAX_ WSH, and scale the
* other one accordingly

*/

/] H gh-pass filter on x to avoid oscillating w shes when approachi ng
if (abs(x) < | R_NO SE_THRESHOLD)

20

X = 0;

if (abs(x) > abs(y)) {
y = (int)((float)y * MAX WSH / abs(x));
X =x >0 7?7 MVAX_WSH : -MAX_W SH

/1y is never negative here

else if (abs(y) > abs(x)) {
x = (int)((float)x * MAXWSH/ y);

y MAX_W SH;
el se
{
X =x >0 7?7 MVAX_WSH : -NMAX_W SH;
y = MAX_W SH,
}
}
}
behavi or _beari ng_wi sh[BEHAVI OR_GET_PUCK] [X] = x;
behavi or _beari ng_w sh[BEHAVI OR_GET_PUCK] [Y] = y;
}
/*

* Behavi or that produces a wish to go towards the opponents goal
*/
voi d behavi or _puck_t o_goal (voi d)

find_goal (OFFENSI VE_GQOAL) ;

< X

behavi or _beari ng_wi sh][BEHAVI OR_PUCK_TO GOAL] [X]
behavi or _beari ng_w sh[BEHAVI OR_PUCK_TO GOAL] [Y]
}
/*

* Behavi or that produces a wish to go towards our goal

*

/

voi d behavi or _go_home(voi d)

find_goal (DEFENSI VE_GQOAL) ;

behavi or _beari ng_w sh[BEHAVI OR_GO_HOVE] [X]
behavi or _beari ng_w sh[BEHAVI OR_GO_HOVE] [Y]

}

/~k
* Behavi or that produces a wish to nove away from the opponent
*/
voi d behavi or _avoi d_opponent (voi d)
{
/1 Basically the same as finding the puck, but repelling instead of attracting
front = ir_data[l| R_FRONT_LEFT] [OPPONENT] +
ir_data[| R_FRONT_RI GHT] [OPPONENT] ;

back = ir_data[l R REAR LEFT] [OPPONENT] +
ir_data[| R_REAR _RI GHT] [OPPONENT] ;
left = ir_data[l R _FRONT_LEFT][OPPONENT] +

ir_data[1l R_REAR LEFT] [OPPONENT] ;
right = ir_data[l R_FRONT_RI GHT] [OPPONENT] +
ir_data[1l R_REAR RI GHT] [OPPONENT] ;

/1 Cal cul ate sonme opponent position, relative to mine.
I/l +y is forward, and +x is right.

X = right - left;

y = front - back;

// Do we really see the opponent?

I f (front < 2 * | R_OPPONENT_THRESHOLD &&
back < 2 * | R_OPPONENT_THRESHOLD &&
left < 2 * | R OPPONENT_THRESHOLD &&
right < 2 * | R_OPPONENT_THRESHOLD) {
/1 opponent is not seen, or is too far away.
X = 0;
y =0;

}

/* Thi s behavior never wants to go towards the opponent. If the
* opponent is in front of us, we want to turn away from him
* i.e. invert x */

21

else if (y
>= 0 ? -MAX_WSH : MAX_W SH;

el se {

/* W see the opponent behind us and

* wish to go away rmuch (=MAX_W SH)

* Set the larger of the two values to MAX WSH, and scale the

* other one accordingly

*/

/| H gh-pass filter on x to avoid oscillating w shes

if (abs(x) < I R_NO SE_THRESHOLD)

X = 0;

if (abs(x) > abs(y)) {
float)y * MAX WSH / abs(x));
- MAX_W SH : MAX_W SH;

y = - (int)((
X =x >07?
}
/1l 'y is never positive here
else if (abs(y) > abs(x)) {
X (int)((float)x * MAX WSH / vy);
MAX_W SH;

X >= 0 ? -MAX_WSH : MAX W SH;
MAX_W SH;

}

behavi or _beari ng_wi sh][BEHAVI OR_AVO D_OPPONENT] [X]
behavi or _beari ng_wi sh[BEHAVI OR_AVO D_OPPONENT] [Y]

}

/*
* Behavi or that produces a wish to go away from obstacles we hit, or to go away froma goal zone
*/
voi d behavi or _avoi d_obst acl es(voi d)
{
static bank2 int counter
static bank2 char last_y 0;
static bank2 char |ast_x ;
static bank2 int ir_puck_in_front = (int)(l R PUCK STRONG SIGNAL * 3.0 / 4.0);
X 0;
y 0,

MOMENTUM_COUNTER,

/1 This is a sinple scheme to back away from any obstacles
/1 the robot has bunped into.

/1 1f hit on the club, *and* carrying the puck, only
/1 back up if hit on the club (ignore front right/left bunpers)
if (bunp_bunper_active(BUWER CLUB) && have_puck()) {

X = 0;

y = - MAX_W SH;

counter = 0;

else {
/1 1f hit fromfront, go backwards if we don't have puck close up front
if ((bunp_bunper_active(BUMPER FRONT_LEFT) ||
bunp_bunper _acti ve(BUVPER_FRONT_RI GHT) ||
bunp_bunper _acti ve(BUMPER_CLUB)) &&
ir_avg_data[l| R_FRONT_LOW[PUCK] < ir_puck_in_front) {
y =y - MAXWSH
counter = 0;

/1 1f hit fromrear, go forward maxi mum warp speed
if (bunp_bunper_active(BUMPER_REAR LEFT) ||
bunp_bunper _acti ve(BUWER_REAR RI GHT)) {
y =y + MAX_W SH
counter = 0;

}

/1 Check that we're not in any goal zone.
/1 This is nore inportant than bunpers, so we override them
if (in_goal _zone(DEFENSI VE_GOAL) == | N_ZONE_FRONT | |

i n_goal _zone(OFFENSI VE_GQOAL) == | N_ZONE_FRONT) {

y = - MAX_W SH,

}
/

*

* Behavi or that produces a random wi sh to avoid |ivel ocks anong the other

*/

X = 0;
counter = 0;

}
else if (in_goal _zone(DEFENSI VE_GOAL) == I N_ZONE_REAR ||
i n_goal _zone(OFFENSI VE_GOAL) == | N_ZONE_REAR)
y = MAX_W SH;
x = 0;
counter = 0;

}

// Set monentum for avoi di ng obstacl es

if (counter == 0) {
last_x = x;
last_y =vy;

count er ++;

}
/1 Use nmonment um MOMVENTUM COUNTER ti nes
else if (counter < MOMENTUM COUNTER) {

x = last_x;

y = last_y;

count er ++;
}
behavi or _beari ng_w sh[BEHAVI OR_AVO D_OBSTACLES] [X] = x;
behavi or _beari ng_w sh[BEHAVI OR_AVO D_OBSTACLES] [Y] = vy;

voi d behavi or _randon{ voi d)

{

static bank2 long total _ir_reading;

static bank2 int scalefactor;

/1 rand() gives an integer in the range 0..32767
/* our belief is that driving around is nore likely to break
is turning, so we give y-coordinates higher priority

To avoid random getting too | arge when the puck is close

wi sh for | ess nmovenent when close to the puck

/

total _ir_reading = ir_avg_data[| R_FRONT_LON [PUCK] +
ir_avg_data[| R_FRONT_RI GHT] [PUCK] +
ir_avg_data[| R_ FRONT_LEFT] [PUCK] +
ir_avg_data[| R_ REAR LEFT] [PUCK] +
ir_avg_data[| R_ REAR Rl GHT] [PUCK] ;

(rand() >>12) - 7, /Il -7..8

(rand() >> 11) - 15; // -15..16

EaE R

X
y

/'l scale according to ir_readings

scal efactor = total _ir_reading / ((long)5 * IR MAX_READI NG ;
behavi or _beari ng_wi sh][BEHAVI OR_RANDOM [Y] y * scal efactor;
behavi or _beari ng_wi sh[BEHAVI OR_RANDOM [X] x * scal efactor;

a livelock in terms of dead spots in behavior summation than

(and hence find_puck doesn't want as nuch) we also let random

behvi ors

23

Bumplib.h

ISR E AR AR R R R R

* *
* Interface to bunper and reflex detector library *
* *

KE KKK KKK XK KKK AKIAK KX KA F AR KA KA A I A XK A I KA Ik XKk h kA k kX * [

#i f ndef _ BUWPLIB_H
#define __BUWPLIB_H
#i ncl ude "stdfunc. h"

/* dobal bunper activation flags */
extern bank2 unsi gned char bunp_bunpers;

/* dobal reflex detector activation flags - nust be cleared in software */
extern bank2 unsigned char bunp_reflexes;

/* Bunper sensor bit positions */
#defi ne BUMPER_REAR_LEFT
#def i ne BUMPER_REAR_RI GHT
#defi ne BUMPER_FRONT_LEFT
#def i ne BUMPER_FRONT_RI GHT
#def i ne BUMPER_PUCK_LEFT
#def i ne BUMPER_PUCK_RI GHT
#def i ne BUVPER_CLUB

#def i ne BUMPER_EMERGENCY_STOP 0

PNWhOOON

/* Reflex detector flag positions */
#def i ne REFLEX_FRONT_RI GHT 0
#define REFLEX_FRONT_LEFT 1
#defi ne REFLEX_REAR_LEFT 2
#define REFLEX_REAR RIGHT 3

/* "Bl ack" detection threshold */
#def i ne REFLEX_BLACK_THRESHOLD 252

/*
* bunp_init - initialize bunper interrupts etc.
*
* Usage:
* bunp_init(); initialize bunper updating
* I NTE=1; external interrupt (on energency stop) enable
* ei(); gl obal interrupt enable
*

/
voi d bunp_init(void);

/~k
* bunp_bunper _active - check if specified bunper is active
*/

#define bunp_bunper_active(X) bittst(bunp_bunpers, X)

/*
* bunp_reflex_active - check if specified reflex is active
*/

#define bunp_reflex_active(X) bittst(bunp_reflexes, X)

/~k

* Updat es bunp sensors and reflex detectors

*/

voi d bunp_pol | _sensors(void);

/*

* bunp_service_routine

* - dummy interrupt handler for energency stop (not handl ed just updated)
*/

voi d bunmp_service_routine(void);

#endi f /* #ifndef __BUWPLIB H */

Bumplib.c

[RF R AKX KA KKK AR K AR FEK IR AR K AR K AK A AK AR I AR K AK AR K AR I AR A AR A

* *
* | npl ementation of bunper and reflex detector library *
* *

AH KKK AR K EK KKK AR KERKAKIAK AR K ARKAF A XK AR K AR K AK KRR AR IR KA AR KK [

#i ncl ude <pic. h>
#i nclude "stdfunc. h"
#i ncl ude "bunplib. h"

bank2 unsi gned char bunp_bunpers;
bank2 unsi gned char bunp_refl exes;

voi d bunp_init(void)

/* RB7..1 - bunper inputs

* RBO - emergency stop

* ANO..3 - reflex detectors

*/

RBIE = O; /1 disable port change interrupt on PORTB
PORTB = OxFF; // clear all data on PORTB

RBPU = 0; /1 Enabl e PORTB weak pul | -ups

TRI SB = OxFF; // set all RBx as inputs

INTF = 0; /1l clear external interrupt flag

TRI SA | = 0b00001111; // set RA3..RAO as inputs, used as ANx
ADCON1 = 0b10000010; // ADFME1l, right justify A/'Dresult,
// RE2, RE1l, REO - digital 1/Q RA5 RA3, RA2, RA1, RAO = AN5:0 - analog I/Q
bi t set (ADCONO, 7); /] ADCS1:0 = 0b10 (sel ect Fosc/32 as cl ock)

bi tcl r (ADCONO, 6);
ADON = 1; /1 power up A/D conversion nodul
}

/~k

* Updat es bunp sensors and reflex detectors
*/

voi d bunp_pol | _sensor s(voi d)

{
static bank3 | ong del ay;
static bank3 char channel; // A/ D channel
static bank3 char adres;
/1 read bunper status on PORTB
bunp_bunpers = 0xFF - PORTB;
/'l sanple reflex detector activation status
for (channel = 0b000; channel <= 0b011; channel ++) {
ADCONO = (ADCONO & 0b11000111) | (channel
for (delay = 0; delay < 50; delay++)
; /] wait Tacq
ADCONO | = 0b100O; // QO
whil e (ADCONO & 0b100)
; /1 wait for DONE (Tad)
adres = ADRESL;
if (adres > REFLEX BLACK_THRESHOLD)
bi t set (bunp_refl exes, channel);
el se
bi tcl r(bunp_refl exes, channel);
for (delay = 0; delay < 50; delay++)
o/l wait Tad
}
}

e

<< 3);

PCFG3: 0 = 0b0010

/1 set channel

bits in ADCONO

25

/*
* bunp_service_routine

* - dummy interrupt handler for energency stop (not handl ed just updated)
*
/
voi d bunp_service_routine(void) {
if (INTF) {
Il clear interrupt flag
I NTF = 0;

/'l emergency stop nmust be handled in calling software

// just read bunper status on PORTB
bunp_bunpers = OxFF - PORTB;

}
}
Ir_servo.h
/**********~k~k~k~k~k**************************
* *
* Interface to IR and servo library *
* *

KK KKK KKK KKK AR KK KKK KKK KA KA KA I IR KK ARk K [

#ifndef __ IR SERVO H
#define __IR SERVO H

/* IR sensor index */
#define | R_FRONT_LEFT
#define | R_FRONT_RI GHT
#define | R_FRONT_LOW
#define | R_REAR_LEFT
#define | R_ REAR Rl GHT

A WNEFEO

/* IR targets */

#def i ne PUCK

#def i ne OFFENSI VE_GOAL
#def i ne DEFENSI VE_GQOAL
#def i ne OPPONENT

#def i ne UNMODULATED

AWNEFO

/* ir_data - global IR data area */
extern bankl int ir_data[5][5]; /* 5 sensors, 5 16bit readi ngs each */

/* Servo index */
#def i ne SERVO CLUB 0 // club is servo 1, place 0 in vector

/* gl obal servo position area */
extern bank2 int servo_pos[4];

/* Club positions */
#define CLUB_LEFT - 3850
#define CLUB_RI GHT 6650

/* Club set nmacro
*

* usage: servo_set_cl ub(CLUB_LEFT);
* servo_set _cl ub(CLUB_RI GHT) ;
*/
#define servo_set_club(X) servo_pos[SERVO CLUB] =X

/* Club read nacro
*
* usage, eg: if (servo_club_pos == CLUB_LEFT)...

*/
#define servo_cl ub_pos servo_pos[SERVO_CLUB]

26

/* I R-data constraints */

#define | R_MAX_READI NG 5500

#define | R_NO SE_THRESHOLD 10

#def i ne | R_PUCK_STRONG S| GNAL 4800 // used when deciding wheter puck is close up front or not
#defi ne | R_OPPONENT_THRESHOLD 100

#define | R_GOAL_LONSENS_THRESHOLD 580 // used when decidi ng whether in shooting range or not

#def i ne | R_ZONE_LOWSENS_THRESHOLD 690

11 -~- used when checking reflex detectors, aborting shot in off. zone and for finding off. goal

#define | R_ZONE_H SENS_THRESHOLD 180 // used when checking reflex detectors
#defi ne | R_GOAL_HI SENS_OVERFLOW 300

/1 hisens high reading, used when finding "strai ght" offensive goal direction
#define | R_GOAL_H SENS_THRESHOLD 360

/'l hisens sum hi gh readi ng, used when scaling distance to offensive goal

#define | R_GOAL_NOT_SEEN THRESHOLD 20

/1 hisens sum | ower bound for turning and searching for offensive goal (wth puck)

/*

* ir_init - initialize IR conmmunications

*

* Usage:

* ir_init(); initialize |IR-data reception
* PEI E=1; peripheral interrupts enable
* ei(); gl obal interrupt enable

*

/
void ir_init(void);

/*

* ir_wait_for_data

* - blocking call while waiting for conplete I R-data reception
*/

void ir_wait_for_data(void);

/*

* ir_is_overflow - return 1 if IR overflow, O otherw se
*/

int ir_is_overflow(void);

*
/: ir_is_bad_data - return 1 if bad IR data, O otherw se
i n{ ir_is_bad_data(void);
/*

:/i r_service_routine - interrupt service handler for IR interrupt
void ir_service_routine(void);

#endif /* #ifndef | R SERVO H */

Ir_servo.c

/**
* *
* I nplementation of IR filter comuncations- and servo library *
* *

EH KKK K EK IR K AR K AR KA KA AK AR K AR KK A AKAK I AR IAK AR K ARF AR A AK AR I AR KA KK h k[

#i ncl ude <pic. h>
#i ncl ude "stdfunc. h" /1 bit manipul ation nacros etc.
#include "ir_servo. h"

/* global IR data area */
bankl int ir_data[5][5]; /1 5 sensors, 5 16bit readi ngs each

/* global servo position area */
bank2 int servo_pos[4];

/* some useful flags */
static bank3 char spi_fl ags;

27

/* bit defs for spi_flags */

#define GOT_1ST O /'l used by interrupt routine to distinguish two consecutive OxFF bytes

#define BAD DATA 1 /] set on failure to receive one ten bit set of data for one sensor
Il or rx overflow, cleared on reception of sensor 0

#defi ne OVERFLOW 2 /1 set after rx overflow, cleared on reception of sensor 0

#defi ne RECEI VING 3 /1 1 when receiving a byte over SPl else 0

#define FULL_SET 4 /1 set when full 5x5 16 bit readi ngs have been received,
/'l cleared by main program

/*

* ir_init - initialize IR comunications

* Usage:

* ir_init(); initialize IR-data reception

* PEI E=1; peri pheral interrupts enable

* ei(); gl obal interrupt enable

*

/
void ir_init(void) {

// init SSP nodule in SPI

SSPCON=0b00000101;
bitclr(TRI SC,5);

node
/1 SPI node, slave
/1 clear TRI SC<5> (SDO i s an out put)

/] TRI SC<3><4> are already 1 (clock and SDI are inputs)

SSPEN=1; /1 enabl e SSP nodul e
/1 enable SSP interrupt
SSPI F=0; /1 first interrupt clear flag
SSPI E=1;
spi _fl ags=0; /'l no spi_flags set
}
/*
* ir_wait_for_data
* - blocking call while waiting for conplete | R-data reception
*/

void ir_wait_for_data(void) {
/1 wait until flag gets set

while (!bittst(spi_flags, FULL_SET)) {}

// and then clear it
bitclr(spi _flags, FULL_SET);

}
/*
* ir_is_overflow - return 1 if IR overflow, O otherw se
*/
int ir_is_overflow(void) {
return bittst(spi_flags, OVERFLOW;
}
/*

* ir_is_bad_data - return 1 if bad IR data, O otherw se

*
/
int ir_is_bad_data(void) {

return bittst(spi_flags, BAD DATA);

}
/*

* ir_service_routine - interrupt service handler for IR interrupt

*/
void ir_service_routine(void) {
static bankl char currsens=0; //
static bankl char currbyte=0; //
static bankl char rxdata; 11
static bankl char servo_no; 11
static bank2 int servo_data; //

/1 SSP interrupt

the (last) readings received is (was) for this sensor (0..4)
the (next) received byte has (will have) (0..7)

tenp storage for received byte

the (next) servo signal to send (1..4)

tenp storage for trasnitted servo byte

SSPI F=0; /1 clear flag

28

/1 store received data and...
r xdat a=SSPBUF;

/1 ...load next byte to be sent (when *the next* byte is received)

if (currbyte==10) /1 next byte will

be 0, send sensor |ow byte

// add 2 to currsens

/'l (has not been updated yet --> +1

/'l requests sensor for next reception --> +1)
SSPBUF=(currsens < 3)?currsens+2: currsens- 3;

else if (currbyte==0) // next byte is 1,
SSPBUF=0;

send sensor high byte

else { // all other bytes are servo positions, high or |ow byte
/1 send high or |ow servo byte

servo_no = (currbyte-1) / 2;

/'l next servo nunber

servo_data = servo_pos[servo_no]; /] get data in vector

if (currbyte¥ !'= 0)

SSPBUF = servo_data & OxOOFF; // next byte is even, send

el se

SSPBUF = (servo_data & OxFFO0) >> 8; // next byte is odd,

/1 check for errors
if (SSPOV)
bi t set (spi _flags, OVERFLOW;

/'l check if we got any OxFF bytes

/1 (two OxFF means start of 12 byte sequence)
if (rxdata==0xFF && bittst(spi_flags, GOT_1ST)) { // two FFs in sequence

Il reset SPI

bi t set (spi _fl ags, RECEI VI NG ;
bitclr(spi_flags, GOT_1ST);
currsens++;

if (currsens>4) {

/I new 5x5 set starts, clear error flags

currsens=0;

bitclr(spi _flags, OVERFLOW;
bitclr(spi _flags, BAD_DATA);

/1 check if last reception was finished

if (currbyte!=10)

bi t set (spi _fl ags, BAD_DATA);

bi tset(spi _flags, GOT_1ST); // we have received one FF

| ow servo pos

send hi gh servo pos

/] store received data in appropriate |ocation wthout average calc.
((char)(&ir_data[currsens][0]))+currbyte)=rxdata;

e recei ved

NG ; // reception conplete

curr byt e=0;
el se {
if (rxdata==0xFF)
el se
bitclr(spi _flags, GOT_1ST);
if (bittst(spi_flags, RECEIVING) {
currbyt e++;
}
if (currbyte==10) { //last byt
if (bittst(spi_flags, OVERFLOW)
bi tset (spi _flags, BAD DATA);
bitclr(spi_flags, RECEIV
/1 was this the |ast sensor?
if (currsens==4)
bi tset (spi _flags, FULL_SET);
}
}

29

Pwmlib.h

AR SRR AR R LR E R R R

* *
* pwrib - Mtor control library *
* *

KEKKK KKK AK KX KKK AKX KA KA KA XK A XKk * Kk Khk [

#i f ndef __PWWLIB_H
#define __PWWLIB_ H

/* dobal data area with (conpensated) speeds of notors (-128...+127).
* Negative val ues mean backward rotation.

* | ndexes:

* 0 - left nmotor conpensated speed
* 1 - right notor conpensated speed
*/

extern bankl signed char pwm speed[2];

/* dobal speed multipliers to conpensate for different notors.
* Set slower notor conpensation factor to 1.

*/

extern bankl float pwml|eft_conp;

extern bankl float pwmright_conp;

/*

* pwninit - initialize PW control

*/

void pwm.init(void);

/*

* pwmstop_notors - set speed O on both notors.
*/

voi d pwm st op_not or s(voi d);

/*

* pwm set_notor_speed - set speeds of notors.

*

* Params:

* Negative values nean backward rotation.

* signed char - left notor speed (-128...+127).
* signed char - right notor speed (-128...+127).
*

/
voi d pwm set _not or _speed(si gned char left, signed char right);

#endif /* #ifndef __ PWLIB H */

Pwmlib.c

/************************************
* *
* pwnlib - Mtor control library *
* *

KIKKKAKKAKKRK AR KAXFAKAAK AR KA XK KKK A * K [

#i ncl ude <pic. h>
#i nclude "pwmib.h"

/* G obal data area with speeds of nmotors (-128...+127).
* Negative val ues nmean backward rotation.

*/

bankl signed char pwmspeed[2] = {0, 0};

/* dobal speed nultipliers to conpensate for different notors.
* Set slower notor conpensation factor to 1.
*/
bankl float pwm.|eft_conp
bankl float pwmright_conp

1
1

/*

utputs */

tion pins) are outputs */
ose |/ 0O on PORTE */

10 */

0010, RE2:0 - digital 1/0*/

low frequency/full resolution */

/*
/* 0 dutycycle */
/*

0 dutycycle */

/* timer 2 on with prescaler 16

(I owest possible PMMfreq.) */

e

r

e=0 */

[FORWARDY BACKWARD]
[FORWARDY BACKWARD)

val ues to PWM val ue

except for 0)

* pwninit - initialize PW control
*/
voi d pwm.init(void)
{
TRI SC&-0b11111001; /* CCP1,2 are o
TRI SE&=0b11111001; /* RE2,1 (direc
PSPMODE = O; /* general purp
ADCON1 &= 0b11110000; /* unmask PCFG3
ADCON1 | = 0b00000010; /* PCFG3:0 = Ob
PR2=0xFF;
CCPR1L=0;
CCPR2L=0;
T2CON=0b00000111;
CCP1CON=0b00001100; / * PWM node */
CCP2CON=0b00001100; / * PWMV node */
}
/*
* setpwm (private) - set the PWM dutycycl
*
* Par arms:
* char left - duty cycle for left notor
* char right - duty cycle for right noto
*/
static void setpwr(char left, char right)
{
CCPR1L=l eft; /* set dutycycle */
CCPR2L=ri ght; /* set dutycycle */
/* clear Isb's (8 and 9) iff dutycycl
if (left==0)
CCP1CON&=0b11001111;
el se
CCP1CON| =0b00110000;
if (right==0)
CCP2CON&=0b11001111;
el se
CCP2CON| =0b00110000;
}
/*
* setdir (private) - set notor direction
*
* Par arms:
* 1 = FORWARD, 0 = BACKWARD
* char left - direction for left notor
* char right - direction for right notor
*/
static void setdir(char left, char right)
RE2 = left;
REL1 = right;
}
/*
* s2pwm (private) - convert signed notor
* (PWM val ues bel ow 128 have al nost no effect
* and are excluded fromthe output set,
*
* Par arns:
* signed char - signed notor val ue
*
* Return:
* char - corresponding PWM val ue
*/

static char s2pwr(signed char val) {

if (val>0)

return (signed int)val +128;

if (val<0 && val!=-128)

return 128-(signed int)val;

if (val==-128)

return O;

return 255;

31

voi d pwm stop_notors(void) {
/* update global data area */
pwm speed[0] = O;
pwm speed[1] = 0;

/* stop motors */
CCPR1L=0; /* set dutycycle */
CCPR2L=0; /* set dutycycle */

/* clear Isb's (8 and 9) */
CCP1CON&=0b11001111;
CCP2CON&=0b11001111;

~

* ok ok k¥

pwm set _not or _speed - set speeds of notors.

Par ans:

Negative val ues nmean backward rotation.

signed char - left nmotor speed (-128...+127).
signed char - right notor speed (-128...+127).

*

*/
voi d pwm set _not or _speed(si gned char left, signed char right)
{
signed char corr_right;
signed char corr_|left;

corr_right
corr_|left

= (signed char)(pwmright_conp*right);
= (signed char)(pwmleft_comp*left);
/* update global data area */

pwm speed[0] = corr_left;

pwm speed[1] = corr_right;

/* send to notors */

set pwn(s2pwn{corr_left), s2pwn(corr_right));
setdir(left>0, right>0);

Stdfunc.h
/*
* Include file for standard functions
*
/
#i f ndef __ STDFUNC _H
#define __STDFUNC H

#define bitset(var,bitno) ((var)|=1 << (bitno))
#define bitclr(var,bitno) ((var)&=~(1<<(bitno)))
#define bittst(var,bitno) (((var)& 1<<(bitno)))!=0)

#endi f /* #ifndef __STDFUNC H */

